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a b s t r a c t

At evolutionary equilibrium, ecological factors will determine the optimal combination of

life-history trait values of an organism. This optimum can be assessed by assuming that

the species maximizes some criterion of fitness such as the Malthusian coefficient or

lifetime reproductive success depending on the degree of density-dependence. We inves-

tigated the impact of the amount of resources and habitat stability on a plant’s age at

maturity and life span by using an evolutionary optimization model in combination with

empirical data. We conducted this study on sea beet, Beta vulgaris subsp. maritima, because

of its large variation in life span and age at first reproduction along a latitudinal gradient

including considerable ecological variation. We also compared the consequence in our

evolutionary model of maximizing either the Malthusian coefficient or the lifetime

reproductive success. Both the data analysis and the results of evolutionary modeling

pointed to habitat disturbance and resources like length of the growing season as factors

negatively related to life span and age at maturity in sea beet. Resource availability had

a negative theoretical influence with the Malthusian coefficient as the chosen optimality

criterion, while there was no influence in the case of lifetime reproductive success. As

suggested by previous theoretical work the final conclusion on what criterion is more

adequate depends on the assumptions of how in reality density-dependence restrains

population growth. In our case of sea beet data R0 seems to be less appropriate than l.

ª 2008 Elsevier Masson SAS. All rights reserved.
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combination of values of life-history traits in this specific

context (Stearns, 1976). Many studies, like ours, try to assess

the consequences of these different ecological factors on the

evolution of life-history traits.

Among the ecological factors influencing life-history

strategies, mortality due to external causes (predation,

disturbance, drought, etc.) is certainly the most studied. High

adult mortality due to external causes is often thought to favor

shorter life span, intense and precocious reproduction, with

annuality as the extreme possibility (Gadgil and Bossert, 1970;

Charnov and Schaffer, 1973; Michod, 1979; Charlesworth,

1980; Young, 1981; Reznick et al., 1990, 1996; Hautekèete et al.,

2001), although the opposite is also possible (Reznick et al.,

2004) when extrinsic mortality decreases population growth

rate or can be limited by greater body maintenance

(e.g. prey/predator system). It is noticeable that the mortality

regime has an impact on which criterion of optimality should

be used in models. One criterion, l (population growth rate), is

adequate in the situation of unlimited exponential population

growth, and in the situation where a population is stabilized

by environmental stress acting uniformly on all age groups.

Another commonly used criterion, the lifetime reproductive

success of an individual, R0, is more adequate in situations of

differential mortality rates between age classes (Mylius and

Diekmann, 1995; Brommer, 2000; Williams and Day, 2003;

Teriokhin and Budilova, 2008).

A second ecological factor potentially able to modify the

optimal life-history tactic is the quantity of available

resources, which can be light, water, nutrients or else. Length

of the growing season affects indirectly the amount of avail-

able resources in plant species by allowing photosynthesis

and nutrient acquisition during this period. Gadgil and Bossert

(1970) suggested that increasing resources should favor

precocious reproduction and higher reproductive effort.

However, Ronce and Olivieri (1997) argued that the opposite

prediction holds for metapopulations. Effects of resources

have also been included in other models through growth rate

or length of the growing season (e.g. Stearns and Koella, 1986;

Iwasa and Cohen, 1989; Berrigan and Koella, 1994), apparently

without any agreement on the consequences for age at

maturity, reproductive effort or life span.

It is obvious that numerous external factors are potentially

influencing the same life-history trait, and, as a consequence,

discriminating experimentally between the various factors

might appear complicated. Many empirical studies are set up

to evaluate the relationship between environmental vari-

ability and the diversity of life-history strategies (e.g. Law

et al., 1977; Reinartz, 1984; Till-Bottraud et al., 1990; Young,

1990). In plants, age at maturity (age at first reproduction, in

years) has proved to be positively related to latitude (Smith,

1927; Cooper, 1963; Reinartz, 1984; Lacey, 1988; Wesselingh

et al., 1994) or altitude (short review in Reinartz, 1984).

Numerous factors, such as length of the growing season or

light and water availability, are related with latitude and

altitude and may plausibly act on life histories (Cooper, 1963;

Harper, 1977). Drought obviously may change optimal life

histories through adult extrinsic mortality (Reinartz, 1984;

Young, 1990) but water can act as a resource too (Harper, 1977).

Length of the growing season is tightly related to the quantity

of resources acquired during the season and at high latitudes
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or altitudes plants may therefore achieve less vegetative

growth. Flowering in their first climatically favorable season

would then weaken survival and future reproduction without

compensation by sufficient current reproduction. A shorter

growing season might consequently favor later age at

maturity and longer life span (which are highly interrelated;

see Charnov and Berrigan, 1990). Vernalization requirement

for flowering, i.e. induction of flowering by exposure to low

temperature during winter (Napp-Zinn, 1987), imposes a later

age at maturity in higher latitudes in many plant species.

The sea beet B. vulgaris subsp. maritima (L.) shows

a particularly high variability in life-history strategies. It

occurs along the Atlantic coasts of Western Europe and of

western North Africa, from Sweden to the Azores, as well as

along the coasts of the Mediterranean (Letschert, 1993). Inland

wild beets are also known in the south-western part of France

(Desplanque et al., 1999). Mean life span (estimated per

population) increases with latitude from about two years in

the inland habitats of south-western France to over 10 years in

North Brittany, then it decreases to about five years in the

northernmost populations (Hautekèete et al., 2002). Life

span’s heritability has been estimated in sea beet to 0.48

among French populations (greenhouse conditions, Van Dijk

unpublished data). Noteworthy heritable variability has also

been described in B. v. maritima for the vernalization require-

ment for flowering (Boudry, 1994; Van Dijk et al., 1997; Boudry

et al., 2002). In Mediterranean populations, most individuals

flower without vernalization requirement (genotypes BB and

Bb), whereas in northern populations all individuals require

vernalization to bolt and flower (genotype bb). Between these

areas, both genotypes coexist at various rates in the same

population (Van Dijk et al., 1997). If germination does not

occur very early in the season vernalization requirement

delays first flowering until the second year, so in the present

study we will consider the percentage of vernalization

requirement as equivalent to the percentage of first flowering

in second year (late age at maturity).

Disturbance has been suggested as an important factor in

life span evolution of B. v. maritima, selecting for shorter life

spans by lowering adult survival probability. In sea beet life

span indeed appears to be highly associated with habitat type,

which is in its turn associated with mortality regime (Haute-

kèete et al., 2002). This supports the earlier cited existing

theoretical work (Gadgil and Bossert, 1970; Charnov and

Schaffer, 1973; Michod, 1979; Charlesworth, 1980; Young, 1981;

Reznick et al., 1990, 1996). Shorter growing seasons in higher

latitudes were suggested to reduce growth, thus favoring

a higher age at maturity (Van Dijk et al., 1997). A complication

is that factors favoring a high age at maturity might also favor

a long life span by allowing reproduction when the plant is

more vigorous. In corollary, a long life span may also favor

a high age at maturity: more time can then be spent on juve-

nile growth which is advantageous because larger individuals

can produce more offspring. As a consequence factors

suspected to influence the evolution of one life-history trait

might also influence the other. It is thus difficult to determine

which factors are directly implicated into life span and age at

maturity evolution in the sea beet.

Our first aim was to assess specific theoretical expectations

on life span and age at maturity evolution depending on
tionary optimization of life-history traits in the sea beet Beta
(2008), doi:10.1016/j.actao.2008.08.004
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mortality regimes and resources (length of the growing

season, which can be considered as equivalent) as well as to

evaluate the importance of demographic hypotheses, i.e. of

the chosen criterion of optimality l or R0, on the impact of both

factors. Many models of life-history evolution as a function of

environmental parameters have been described in the litera-

ture, but none of them is appropriate for our purpose. First, no

models combine mortality and resource supply and second,

they rarely use both possible fitness criteria (as for example,

Berrigan and Koella, 1994; de Jong et al., 2000). Therefore we

developed a realistic model (evolutionary optimization) that

describes the evolution of both life-history traits (life span and

age at maturity), under the two categories of factors that are

suspected to act on the evolution of these traits (mortality

regime and resources), using the pre-cited optimization

criteria (l and R0).

Then, using empirical data in the sea beet, we assessed the

respective influences of disturbance (a major source of

mortality) and several climatic factors (which define the

length of the growing season and therefore the level of

available resources, as well as some aspects of extrinsic

mortality) on life span and age at maturity. This was done by

multivariate analyses conducted on disturbance estimators in

the sea beet populations described in Hautekèete et al. (2002)

and meteorological data.

Finally, empirical data and results of the evolutionary

optimization model were confronted and discussed.
T
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2. Materials and methods

2.1. Model

We supposed that the population dynamics can be adequately

described by a classic Leslie transition matrix with elements

mx, the fertility at x-th age group, and px, the probability to

survive from age x to age xþ 1. For the species we model, x was

expressed in years. In our simulations, where we model

individual life histories from ‘‘birth’’ to death (without any

interaction between individuals), we substituted age x by time

(in years) t. A year was actually simulated over a shorter

period: the growing season. Mortality was supposed to happen

between the growing seasons. Technically, mortality during

the growing season was ascribed to the previous inter-

seasonal period (i.e. we considered individuals not having

survived the current season as not having survived the

previous winter) and in the same way mortality in the first

year (the year of germination) was implicitly taken into

account as reduced fertility.

The dominant eigenvalue l of the transition matrix is

commonly used as a quantitative measure of Darwinian

fitness (Sibly, 1989; Metz et al., 1992; Kozlowski, 1993). It can be

shown, that l is an adequate criterion of optimality in, at least,

two situations: first, in the situation of unlimited exponential

population growth, and second, in the situation where a pop-

ulation is stabilized by uniform density-dependence on all age

groups (Mylius and Diekmann, 1995). Evolutionary optimiza-

tion in these situations consists therefore in searching for

values of px and mx that maximize l. In other situations other

criteria can be adequate (or a simple criterion of evolutionary
Please cite this article in press as: Hautekèete, N.-C. et al., Evolu
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optimality in the above sense may not even be found). In

particular, when density-dependence acts only on juveniles,

or, to the contrary, only on adults, an adequate criterion is the

lifetime reproductive success of an individual, R0 (Mylius and

Diekmann, 1995). Maximization of l in the first case and

maximization of R0 in the second case are necessary and

sufficient in order that the obtained strategies be ESS (Mylius

and Diekmann, 1995). As in many applications it is not clear

how the environment acts but the preference is often given to

R0 because of less computations needed (Kozlowski, 1993;

Charnov, 1997).

The elements px and mx are interrelated by trade-offs,

described either by trade-off curves, which link px and mx

explicitly (Williams, 1966; Calow, 1979; Sibly and Calow, 1986)

or through the allocation of common resources among

different needs of the individual such as growth, reproduc-

tion, repair, maintenance, etc. (Kozlowski, 1991; Perrin and

Sibly, 1993). An advantage of this approach, which we will use

here, is that it allows modeling in more detail of the hypo-

thetical physiological mechanisms underlying the trade-offs.

We supposed as it is usually done (Roff, 1983; Ziolko and

Kozlowski, 1983; Day and Taylor, 1997) that the amount of

biomass produced during one unit of time, B, is proportional,

with a coefficient D, to some power E, 0< E< 1, of an indi-

vidual’s biomass W

B ¼ DWE (1)

This equation is widely accepted for describing the basic

metabolism of an organism (West et al., 1999) with E¼ 0.67

(Rubner’s law) or E¼ 0.75 (Kleiber’s law). We tried both

values in computations and obtained similar results, so only

results for E¼ 0.67 are presented. We only considered the

biomass used for growth, reproduction, and inter-seasonal

survival. So we implicitly assumed that these expenses

constituted a roughly fixed proportion of the total biomass

produced by the individual at each moment. We considered

the parameter D as reflecting the nutritional quality of the

environment through the duration of the productive part of

the season.

D also depends on the unit in which B and W are expressed.
The biomass produced by an individual was divided among

several needs. A fraction st was invested in inter-seasonal

survival; the residual, (1� st) between growth and reproduc-

tion. The year (the growing season) was divided into two

periods of duration gt and 1� gt. In the first period the residual

biomass was invested in growth and instead of the linear

approximation equation for Wt

Wt ¼Wt�1 þ gtð1� stÞDWE
t�1 (2)

we used a more precise equation obtained by integrating the

differential equation

dW
dt
¼ ð1� stÞDWE

over the period t� 1 to t� 1þ gt:

Wt ¼Wt�1þgt ¼
�
W1�E

t�1 þ ð1� stÞDð1� EÞgt

�1=ð1�EÞ
(3)

(W0, the individual’s size at birth, t¼ 0, is one of the parame-

ters of the model).
In the remaining period, 1� gt, the size remained constant

and the residual biomass was allocated to reproduction,
tionary optimization of life-history traits in the sea beet Beta
(2008), doi:10.1016/j.actao.2008.08.004
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whether immediately or in the form of biomass accumulated

to be used for future reproduction. The total season invest-

ment in reproduction, ut, is given by the equation

ut ¼
�
1� gt

�
ð1� stÞDWE

t (4)

One additional variable, we denoted ft, must be added to

indicate whether the individual saves reproductive invest-

ment for the next year ( ft¼ 0) or liberates all ( ft¼ 1). We did

not consider intermediate values.

We supposed that st was constant over the entire growing

season but could differ among years, the latter also being the

case for gt and ft. We therefore had to optimize st, gt and ft in

each year. Before presenting the way in which the optimiza-

tion is done, the link has to be made between the variables st,

gt and ft and the transition matrix elements pt and mt.

We supposed that there are two potential causes for an

individual to die before the next season. The first cause is

uncontrollable by the individual and due to the severity

(instability) of the environment. In our simulations we

considered a constant survival rate Q independent of the

individual’s age or state. The second cause of death was

controllable by the individual, and survival rate here was

taken as st
S, where the parameter S determines the efficiency

of the relative investment in survival st: the lower the value of

S, the higher the efficiency. We did not use the absolute value

of investment in survival because larger individuals were

supposed to need proportionally more repair (i.e. more energy

to maintain the structures despite various causes of damage:

UV radiation, sandy wind, salt, etc.).

We supposed that these two causes (they could be called

environmental and physiological, or external and internal, or

uncontrollable and controllable) acted independently and

hence the overall probability to survive to the next season is

pt ¼ QsS
t (5)

A consequence is that pt¼ 0 if there is no investment in

survival (then the individual’s life span is the value of t for

which pt¼ 0). The individual can thus deliberately prevent any

investment in winter survival and use all economized

resources for reproduction. This means that any of both

possible strategies can be chosen in our model: determinate or

indeterminate life span.

The model allowed the accumulation of reproductive

investment during several years before liberating it in the

form of offspring. The amount of reproductive investment

accumulated at the end of t-th season, Ut, is equal to the sum

of reproductive investment accumulated over the years with

ft¼ 0 since the last total release (the last year with ft¼ 1).

Ut ¼ Ut�1 þ ut (6)

where U0¼ 0, and Ut�1 was reset to 0 if the reproductive

biomass was effectively used at the end of season (t� 1).

The evolutionary argument for the accumulation of

reproductive investment instead of an immediate use was

that reproductive output may not be a linear function of the

allocation to reproduction. We assumed, as it seems biologi-

cally plausible, that the reproductive output mt depends

nonlinearly on the liberated reproductive investment

mt ¼ ftU
C
t (7)
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with C> 1. Such a relationship means that the gain in fecun-

dity accelerates with investment and that it is disadvanta-

geous to liberate small amounts.

We used the mathematical theory of optimal control

(e.g. Bellman, 1957; Pontryagin et al., 1962) to find the optimal

strategy of biomass allocation during the individual’s lifetime.

In the terms of this theory the time-dependent variables Wt

and Ut are called the state variables of the system. A second

set of variables, called control variables, was represented by st,

gt and ft. The third basic notion in optimal control is formed by

the state equations, i.e. equations which describe the

dynamics of the state variables. The state equations for Wt

and Ut were (3) and (6) respectively.

The question of choosing a suitable criterion of optimality

is central to optimal control theory. In our case we used two

criteria: the rate of population increase, l, and the lifetime

reproductive success, R0.

The problem of optimization is formulated as searching for

an optimal (i.e. maximizing the criterion of optimality)

strategy of taking control decisions (i.e. of attributing values

for control variables) knowing the individual’s state

(i.e. knowing the values of the state variables). In other words

we should determine st, gt and ft as such functions

st ¼ stðWt;Ut; tÞ; gt ¼ gtðWt;Ut; tÞ; ft ¼ ftðWt;Ut; tÞ

of Wt, Ut, and t that l or R0 is maximized. One way to do this is

to use the method of dynamic programming (Bellman, 1957;

Mangel and Clark, 1988).

The central notion of dynamic programming is the so-called

gain function F(Wt, Ut, t). The value of this gain function should

be given at t¼ T (where T is somewhat higher than the

maximum life span of the species modeled) for all values of the

state variables (which are supposed, as well as t, to be discrete).

At t¼ T the individual is already dead so that F(WT, UT, T )¼ 0 for

all values of the state variables. The values of the gain function

at other time steps were calculated iteratively backwards from

t¼ T� 1 to t¼ 0 in according with the so-called basic equation

of dynamic programming. This equation allowed calculating

the gain function for all values of the state variables at any time

step t on the basis of knowing this function at time step tþ 1. In

our case the basic equation was as follows

FðWt;Ut; tÞ ¼max
st ;gt ;ft

�
FðWtþ1;Utþ1; tþ 1Þpt þmt

�
l�1

(in the case of taking R0 as criterion we simply set l¼ 1).
Most important was to find at each iteration of age the

optimal values of the control variables st, gt and ft for all sets of

values of the state variables Wt and Ut, i.e. the sought optimal

strategy. It can be shown (Taylor et al., 1974) that to find the

maximum of l it is sufficient to find the maximum of the left

side of the Euler–Lotka equation for different values of l and

take as the result that value of l which corresponds the

maximum equal to 1. That means that we should solve the

dynamic optimization problem for different values of l and

choose that value which satisfies the condition F(W0, U0, 0)¼ 1.

This was realized by embedding the procedure of dynamic

optimization on st, gt and ft into a procedure of solving equa-

tion in respect of l by bisection method. The knowledge of the

optimal strategy allowed thereafter finding the optimal

dynamics of state variables Wt and Ut by iterating forward the

state equations (3) and (6).
tionary optimization of life-history traits in the sea beet Beta
(2008), doi:10.1016/j.actao.2008.08.004
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We tested the dependence of the optimal life-cycle strat-

egies on the model parameters. Main attention was given to

the influence of parameters D and Q which we associate with

environmental resource supply and winter survival. The

range of variation for the survival Q (probability to survive the

winter considering external causes of death only) was inves-

tigated almost entirely. As regards the resource supply D, its

range of variation was chosen in such a way as to obtain

biologically plausible and interesting ranges of the life-history

traits.

2.2. Data

2.2.1. Sea beet
In the Beta species-complex, the sea beet, B. vulgaris subsp.

maritima (L.) Arcangeli, has a particularly variable life cycle

(Letschert, 1993), from long-lived with vernalization require-

ment for flowering in the northern part of its distribution area

(Atlantic coasts of France, Belgium, the Netherlands, Great-

Britain and of the western Baltic sea) to short-lived semel-

parous without vernalization requirement for flowering in the

Mediterranean area (Letschert, 1993) and in the inland

populations of south-western France.

Sea beet overwinters as vegetative rosettes, which are

produced at the end of the reproductive season. Except for the

seeds, all other aerial parts (stems, leaves and flowers) dry out.

Thick roots store resources, thus allowing overwintering and

a quick growth in the following spring. Growth is indetermi-

nate and although plant size variability over the distribution

area has not been studied formally there is a relationship with

life span. Except for the possible role of habitat disturbance on

life span evolution (Hautekèete et al., 2002), to our knowledge

few data are available on potential mortality sources,

although we observed that sea beet, like cultivated beet, is

attacked by many pathogens.

Seeds were collected in 1989 all over the French distribu-

tion area of B. v. maritima (see Van Dijk et al., 1997; Hautekèete

et al., 2002). Plants were grown from seed in a glasshouse, in

order to avoid external causes of mortality by controlling

environmental conditions. Life span and the percentage of

individuals requiring vernalization for flowering were

estimated for each population. In this paper we restrict the

data to the 94 populations for which we had homogeneous

meteorological data: populations from the French Atlantic

and Mediterranean coasts, Channel Islands (Jersey and

Guernsey) and inland (south-western France).

Meteorological data were used to describe the quality

and/or the length of the growing season. We selected 29

locations along the French distribution of B. v. maritima for

which meteorological data were available from 1961 to 1990

(MétéoFrance, 2000) to describe the climate in the study area.

Sea beet populations were attributed to the nearest Météo-

France locality. We chose synthetic parameters because they

summarize meteorological conditions, which reduces the

number of correlations between parameters and limits the

risks of putting unintentionally too much weight on some

aspects of the climate in the multivariate analyses.

We selected nine meteorological parameters: (1) the

number of months between the first and last frosts over 30

years (FRO); (2) an estimate of the variability of temperatures
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over years (YVT, the difference between the values of the

highest and the lowest quintiles for annual temperature);

(3) an estimate of the variability of precipitation over years

(YVP, same calculation). FRO gives the length of the period of

potential mortality associated with winter. YVT reveals the

variability of temperatures over years. These parameters are

therefore mainly associated with mortality due to tempera-

ture, e.g. frost. YVP can be viewed as potentially associated

with mortality due to lack or excess of water.

(4) The number of months with a minimum temperature

higher than 8 �C (MIN8), during which we suppose that

vernalization is negligible; (5) annual temperature (TEMP, in
�C) and (6) annual precipitation (PPT, in mm). MIN8 might be

an excellent estimate of the length of the growth season.

TEMP (annual temperature) can be viewed as related with

resources since a longer period of potential growth and

a higher mean temperature allow a larger accumulation of

resources and a higher metabolism. For similar reasons PPT

(annual precipitation) can be considered as a resource too, as

long as it varies between values that are high enough to allow

survival but too low to fully meet plants’ requirements.

(7) An estimate of the between-season variability of

temperatures (SDT, the standard deviation of temperatures

calculated from the 12 monthly mean temperatures), (8) an

estimate of the between-season variability of precipitation

(SDP, same calculation); (9) IPT follows the scale of

ombrothermic diagrams. It is an index of water availability.

This index might be interpreted as a resource when it is high,

but might correspond to a climatic risk of mortality when it is

very low, i.e. associated with high annual temperatures. SDP

and SDT can be viewed as estimates of the amplitude of

seasonality, and as such could be related with climatic

mortality risks (a large SDT might correspond to very low

temperatures during winter and/or to drought during

summer, and a large SDP might be associated with summer

drought) ( QTable 1).

To estimate disturbance, we established for each sea beet

population a variable based on habitat type: habitat stability

(STA; Hautekèete et al., 2002). We defined seven categories for

STA: (1) margin of fields, (2) near-building area or roadside,

(3) harbour or oyster basin, (4) beach or dune, (5) canal or

estuary, (6) rocks or seawall and (7) cliff. The values corre-

spond to probable disturbance rate, from the most disturbed

(1, margins of fields, where beets are regularly mown or

eliminated by hand or by herbicide treatments) to the least

disturbed (7, natural cliffs) (Hautekèete et al., 2002). For each of

the 29 localities we finally calculated from the surrounding

populations (1) average stability index (STA) (2) mean life span

(LSP) and (3) the number of individuals with or without

vernalization requirement (bb vs B-) (Van Dijk et al., 1997;

Hautekèete et al., 2002). We chose to pool populations rather

than to attribute the climatic values of each MétéoFrance site

to surrounding populations for two reasons. First this limited

the risk of putting unequal weights on the climatic values of

MétéoFrance sites depending on the number of surrounding

populations. Second, life-history evolution in a population is

the consequence of selection pressures on all populations that

exchange genes regularly. As a consequence genotypes inte-

grate selective pressures on a larger area than the population

and thus pooling populations better reflects reality.
tionary optimization of life-history traits in the sea beet Beta
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Fig. 1 – Dependence of the maturity age (white squares, in

years) on resources (D; provisional units) and survival (Q;

environment-related probability to survive the winter) for

the case when l is used as optimality criterion (C [ 2,

E [ 0.67, S [ 0.5).

Table 1 – Abbreviations of the ecological parameters and
life-history traits

Abbreviation Description

IPT Index of water

availability, in mm/�C

MIN8 The number

of months with a minimum

temperature higher than 8 �C

FRO The number

of months between

the first and last frosts

YVT Between-year variability

of temperatures

YVP Between-year variability

of precipitation

SDT Between-season variability

of temperatures

SDP Between-season variability

of precipitation

TEMP Annual temperature,

in �C

PPT Annual precipitation

in mm

STA Habitat stability index

LSP Mean life

span of the populations

bb Percentage of plants

requiring vernalization (late maturity)

in the populations

See text for details.
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2.3. Data analysis

We first calculated the correlation matrix between all climatic

and habitat variables, considering the 29 MétéoFrance sites,

which revealed 19 significant (a¼ 0.05) correlations among

which 4 significant correlations between STA and the climatic

factors. The latter correlations were mainly due to the locali-

zation of very unstable habitats (STA� 3) in a restricted area

from Agen to the Mediterranean (Hautekèete et al., 2002) with

obvious climatic similarities that were confirmed by a Prin-

cipal Component Analysis conducted on the 9 meteorological

parameters for the 29 sites (not shown). Furthermore this

large set of ecologically similar sites, compared with pop-

ulations along the latitudinal gradient, might unbalance our

analyses. Moreover, populations from Agen to the Mediterra-

nean are phylogenetically separated from the other French

populations (Desplanque et al., 1999). This led us to consider

the data from this area with some caution. We then decided to

restrict our analyses to data from Northern France to Biarritz

(22 sites).

We conducted a Principal Component Analysis on the 9

meteorological factors (based on the correlation matrix). We

only considered the Principal Components (PCs) with eigen-

values higher than 1. We checked that this arbitrary choice did

not significantly affect the interpretation of the results. We

then interpreted these significant PCs in order to identify the

main factors possibly implicated in life span and vernalization

requirement distribution in sea beet.

In order to assess which environmental characteristics

explained the life span (LSP) or the percentage of plants
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requiring vernalization (bb vs B-), we used stepwise regression

analyses in which the life-history traits were the dependent

variables whereas STA and the scores of the sites on PCs were

the independent variables (ato-enter¼ 0.05; ato-exclude¼ 0.05).

Among all variables, only the percentage of plants requiring

vernalization departed significantly from normality (Ryan-

joiner test). For that particular trait the stepwise analysis was

consequently conducted on the binomial variable ‘‘number of

individuals requiring vernalization for flowering’’ vs ‘‘number

of individuals without vernalization requirement for flower-

ing’’ (logistic regression, data described in Van Dijk et al., 1997,

mean number of individuals¼ 56.23, s.d.¼ 69.12). Deviances

were obtained by a regression analysis (logistic regression for

vernalization requirement) that incorporated the significant

factors from the stepwise analysis, ordered by decreasing

deviances in the stepwise. The part of variance explained by

each factor or axis was calculated as the ratio of its deviance

on the null deviance of the model. PCA and regressions were

conducted using Statistica 7.0 (StatSoft Inc., 2004) and R2.6.1

(R Development Core Team, 2007) respectively.
E
D
P3. Results

3.1. Model

In Figs. 1–4 we present the optimal strategies obtained for

D (resource supply) varying from 0.5 to 3 and Q (extrinsic

survival) varying from 0.05 to 0.99. The parameters C and

S were fixed: C¼ 2 and S¼ 0.5. The values of parameters C and

S were chosen in such a way as to obtain a large range of life

spans, from annuality to large values of 15–20 years, which fits

well the sea beet maximum life span (over 15 years, Haute-

kèete et al., 2002 and unpublished data) and which approxi-

mates indeterminate life span (in our simulations, the

strategies for life spans of 15–20 years did not differ much

from those of indeterminate life spans). It was also taken into
tionary optimization of life-history traits in the sea beet Beta
(2008), doi:10.1016/j.actao.2008.08.004
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Fig. 2 – Dependence of the maximum life span (white

squares, in years) on resources (D; provisional units) and

survival (Q; environment-related probability to survive the

winter) for the case when l is used as optimality criterion

(C [ 2, E [ 0.67, S [ 0.5).
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account that real values of l should not differ greatly from 1,

hence the ones obtained in modeling should not deviate much

from 1 as well.

Fig. 1 shows how age at maturity depended on resources

and survival when l is used as optimality criterion. Fig. 2

illustrates the dependence of maximum life span on the same

parameters for the same criterion. We may observe that both

age at maturity and maximum life span increased when

survival increased and/or resource supply decreased. The

shortest maximum life span equal to 1 year was optimal when

resources were abundant and/or survival was low. With less

resources and higher survival, annual life cycles transformed

firstly into biennial ones and then to life cycles of 3, 4, 5 and

more years. For very low resource levels and sufficiently

high survival the maximum life span became practically
U
N
C
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R
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Fig. 3 – Dependence of the maturity age (white squares, in

years) on resources (D; provisional units) and survival

(Q; environment-related probability to survive the winter)

for the case when R0 is used as optimality criterion (C [ 2,

E [ 0.67, S [ 0.5).

778
779

Please cite this article in press as: Hautekèete, N.-C. et al., Evolu
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indeterminate. Age at maturity in such situations and with

the described values of the parameters reached 10 years.

Figs. 3 and 4 show the dependence of age at maturity and

maximum life span on resources and survival when lifetime

reproductive success R0 was used as the criterion. We see, in

particular, that neither age at maturity nor maximum life

span depended on resource supply (for the analytical

approach – see the Appendix). Growth became indeterminate

for very rich resource supply (D> 2.5), reproduction occurred

year after year following the first flowering.

3.2. Data

The correlation matrix conducted on 22 sites showed 13

significant correlations (a¼ 0.05; Table 2). The PCA conducted

on climatic factors gave 3 Principal Components (PCs) with

eigenvalues higher than 1, explaining 86.12% of the total vari-

ance (Table 3). The most important variables (factor

loading> 0.65) structuring PC1 were IPT, YVP, SDP, and PPT (all

with negative coefficients on the axis). The most important

ones for PC2 were FRO and YVT (positive values). The most

important ones for PC3 were MIN8 and TEMP (positive values).

The stepwise regression conducted on LSP as a dependent

variable with STA and scores of the sites on the 3 main PCs as

independent variables gave the following regression:

LSP¼ 2.63**� 0.55* PC2þ 0.73*** STAþ 0.33** PC1� 0.32* PC3

( p-values: ***<0.001; **<0.01; *<0.05). The overall regression

explained 80.26% of the total variation. PC2, STA, PC1 and PC3

explained respectively 33.69%, 33.18%, 7.53% and 5.84% of the

total variation for LSP.

The logistic stepwise regression conducted on the number

of individuals with vs without vernalization requirement as

a dependent variable with STA and scores of the sites on the 3

main PCs as independent variables gave the following

regression: logit(bb frequency)¼ 0.49ns� 0.85*** PC2þ 0.95**

STA� 0.93* PC3 ( p-values: ***<0.001; **<0.01; *<0.05; nsnon-

significant). The overall regression explained 77.95% of the

total variation. PC2, STA and PC3 explained respectively

15.89%, 54.92% and 7.14% of the total variation for bb

frequency.
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4. Discussion

The modeling (Figs. 1–4) of the dependence of the evolutionary

optimal values of age of maturity and maximum life span on

resources (parameter D) and on the safety of the environment

(parameter Q) demonstrated roughly the same tendency. Long

life span and later maturity are optimal for poorer and safer

environments. This theoretical expectation is supported by

sea beet in which long life span and later maturity correlate.

However, in sea beet late-flowering genotypes flower at the

latest in the second year (Boudry et al., 2002; Hautekèete et al.,

2002). It is possible that the range of values for disturbance or

resources encountered by sea beets effectively select for

flowering in the first or second year. Another explanation

would be that the evolution of later age at maturity simply is

impossible in the sea beet due to a lack of the required genetic

variation, physiological constraints, etc. (Antonovics and van

Tienderen, 1991).
tionary optimization of life-history traits in the sea beet Beta
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Fig. 4 – Dependence of the maximum life span (white

squares, in years) on resources (D; provisional units) and

survival (Q; environment-related probability to survive the

winter) for the case when R0 is used as optimality criterion

(C [ 2, E [ 0.67, S [ 0.5).
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There are some interesting particularities in the results

with respect to the optimality criterion used in computations.

If lifetime reproductive success (R0) is used as optimality

criterion the effect of resource availability does not appear in

modeling (Figs. 3 and 4). On the contrary, if we use the

Malthusian parameter (l) as a criterion of evolutionary opti-

mality the effect of resources is similar to (and even more

expressedthan) theeffect ofenvironmentalsafety (Figs. 1 and 2).

The problem of the choice of the criterion is an important

one. Neither of these two fitness criteria would be perfectly

adequate for many species. As noticed previously, l is an

adequate criterion of optimality when the exponential pop-

ulation growth is unlimited, or when the population is stable

and this stability is kept by uniform density-dependence on all

age groups. Exponential population growth is certainly not

unlimited in non-pioneer plants, and purely uniform environ-

mental pressure acting constantly on all age classes is not

very probable. When density-dependence acts only on juveniles

or on adults, the adequate criterion is R0 but this seems also
U
N
C

Table 2 – Correlation matrix between ecological variables (clim
from Northern France to the southern Atlantic coast

IPT MIN8 FRO YVT

MIN8 �0.04 ns

FRO 0.30 ns �0.35 ns

YVT 0.08 ns �0.30 ns 0.81***

YVP 0.54** 0.08 ns 0.14 ns 0.05 ns

SDT �0.20 ns �0.03 ns 0.58** 0.68***

SDP 0.67** 0.31 ns �0.21 ns �0.50*

TEMP �0.01 ns 0.64** �0.22 ns �0.18 ns

PPT 0.90*** 0.24 ns 0.16 ns 0.01 ns

STA 0.01 ns �0.19 ns �0.23 ns �0.25 ns

Values are Pearson correlations. See text for more details and Table 1

**p-values� 0.01; ***p-values� 0.001.
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unlikely. The use of R0 would therefore not perfectly match

reality either. It is probable that in many species environmental

stresses act both on juveniles and adults but not uniformly:

there could be a stronger pressure either on juveniles or on

adults. Similarly, years without and years with age-dependent

external mortality may alternate. Unfortunately empirical

demographic data that are precise enough to be confronted to

these hypotheses are not available for sea beet, nor, to our

knowledge, for most species in general.

We presented results that were obtained with the appar-

ently most realistic parameter values. Nevertheless, some

details of the model, e.g. the abruptness of the sigmoid rela-

tionship between reproductive output and reproductive

investment (results not shown), may modulate the resource

effect on optimal life history (but never suppress it). Moreover,

this model could be completed. Theoretical studies of the

evolution of life histories often show that models based on

a metapopulation give a prediction different from single-

patch models (de Jong et al., 2000; Ronce and Olivieri, 1997).

Due to lower density-dependence in the recently colonized

populations of a metapopulation, generation time is expected

to be lower. de Jong et al. (2000) observed earlier flowering of

the monocarpic perennial Carlina vulgaris than expected in

a single patch. Local extinction and colonization may also

occur to a variable extent in sea beet, in particular in inland

populations growing in man-disturbed habitats (Van Dijk and

Desplanque, 1999). A logical further extension of our study

would therefore be to develop a metapopulation model that

could be compared to a single-patch model to test fitness

measures which could be more adequate in that context

(Metz and Gyllenberg, 2001). Finally, our model does not

consider explicitly the accumulation of deleterious mutations

with vanishing selection intensity (evolution of senescence).

However since life-history optimization methods include

trade-offs between investments into reproduction vs

maintenance, our model is in complete agreement with the

theories of antagonistic pleiotropy (Williams, 1957) and of the

disposable soma (Shanley and Kirkwood, Q2000).

Empirical data suggest that sea beet life span may be

explained by several climatic factors and by habitat stability.

The Principal Component Analysis on 9 climatic factors for 22

localities along French coasts (from Northern France to

southern Atlantic coast) gives 3 Principal Components (PCs)
atic factors and habitat stability) in 22 MétéoFrance sites

YVP SDT SDP TEMP PPT

�0.04 ns

0.57** �0.60**

0.41 ns 0.18 ns 0.32 ns

0.70*** �0.14 ns 0.75*** 0.42 ns

�0.03 ns �0.47* 0.04 ns �0.29 ns �0.08 ns

for abbreviations. ns¼ non-significant at a¼ 0.05; *p-values� 0.05;
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Table 3 – PCA conducted the climatic factors as variables
and 22 MétéoFrance sites from Northern France to the
southern Atlantic coast as cases

PC1 PC2 PC3

Eigenvalue 3.52 2.59 1.64

% of the total variance 39.06 28.81 18.24

Cumulative % 39.06 67.87 86.12

IPT L0.68 0.55 �0.36

MIN8 �0.44 �0.30 0.68

FRO 0.28 0.89 �0.05

YVT 0.46 0.81 0.13

YVP L0.68 0.45 0.09

SDT 0.50 0.56 0.58

SDP L0.94 �0.03 �0.20

TEMP �0.50 �0.05 0.80

PPT L0.85 0.48 0.01

Eigenvalues and percentage of the total variance explained by the

Principal Components (PCs), and factor coordinates of the variables

are based on correlations. See Table 1 for abbreviations of the

ecological factors.
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with eigenvalues higher than 1. The first retained Principal

Component (PC1) is mainly structured by annual average

precipitation (PPT), precipitation variability among (SDP) and

over years (YVP), and water availability weighted by mean

temperature (IPT), i.e. several aspects of water availability that

can be associated either with resources or with mortality risks

(see material and methods). PC2 is mainly structured by the

length of the period of potential mortality associated with

winter (FRO), and by temperature variability between years

(YVT). YVT decreases with decreasing climatic stability and

thus with increasing average mortality risk. Although YVT

reflects climatic unpredictability for temperatures, it also

increases average mortality. This axis is therefore mainly

associated to mortality due to temperature, e.g. frost periods.

Finally PC3 is structured by MIN8 and TEMP, i.e. the number of

months with a minimum temperature higher than 8 �C and

annual temperature. We can then consider that this axis is

structured by resources (or length or the growth season as

defined earlier) since (1) we took MIN8 as a good estimate of

the length of the growth season and (2) a higher mean

temperature during growth season might allow a higher

metabolism and a larger accumulation of resources.

Sea beet life span along French Northern and Atlantic

coasts is well explained by these three PCA axes and by STA.

They indeed altogether describe 80.26% of its total variation.

Temperature-related mortality risks (PC2, structured by FRO

and YVT) explain 33.69% of life span variation along the

French Atlantic coast in sea beet. FRO and YVT are negatively

related to life span, suggesting that mortality due to extreme

temperatures like frost might have selected for shorter life

span in some sea beet populations. The estimate of habitat

stability (STA) significantly explains 33.18% of life span

variability in sea beet populations in this area. This supports

the positive impact of habitat stability on life span evolution in

sea beet, which has been described earlier in Hautekèete et al.

(2002). PC1 explains 7.53% of the total life span variation. Its

main structuring factors IPT, YVP, SDP and PPT, are negatively

related with life span. On the one hand, PPT and IPT can be
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viewed as water availability estimates. Their negative relation

with life span would then suggest that life span might

decrease with increasing water resource. On the other hand

PC1 is also structured by YVP and SDP which mainly describe

the amplitude of rainfall variations between years and

between seasons. As such they describe the risk for a sea beet

of encountering unfavorable watering conditions like drought.

Since they are negatively related with life span, it can be

interpreted as the selection of shorter life span with

increasing drought risks. Therefore PC1 does not allow

discriminating between mortality risks and resource effect

associated with rainfall. Finally, PC3 and its two main

parameters, namely MIN8 and TEMP, are negatively related

with life span. Since this axis is mainly associated to the

length of the growth season, this suggests that higher

resource levels related with temperature and longer growth

seasons might have selected for shorter life span in sea beet

populations. Length of the growth season significantly

explains about 5.84% of life span variation.

Our empirical data therefore suggest that (1) mortality due

to climate, like extreme temperatures, or to habitat stability

and (2) resource-related climatic factors such as the length of

the growth season or mean annual temperature, apparently

explain altogether a large part of the life span variability in sea

beet from Northern France to Southern Atlantic coast. Rain-

water availability explains a part of life span distribution too,

although this is difficult to know from our data if this is due to

resources or mortality risks.

These categories of ecological effects on life span evolution

have already been documented in the literature. First,

increasing life span with habitat stability has been shown in

many species or systems. For example, annual species tend to

be more represented in arable fields, while in human settle-

ments their proportion is reduced at the expense of species

with longer life spans – biennials and perennials, probably

because arable land is disturbed every year due to agricultural

management, whereas human settlements contain a mosaic

of frequently disturbed sites and of sites that are occasionally

left undisturbed for several years (Lososova et al., 2006). Hill

et al. (2002) suggest that annuality in northern Europe is

generally an indication of human disturbance but they

recognize that it can also result from unfavorable seasons like

summer drought, which is a climatic source of mortality.

Moreover, Till-Bottraud et al. (1990) showed the evolution of

shorter life span in Poa annua in dry sites compared with the

regularly watered golf sites of the same area, which can be

interpreted as the consequence of the climatic risk induced by

drought. Finally van Kleunen (2007) showed that Mimulus

guttatus is locally adapted to the permanent vs sporadic

presence of water and is annual in populations suffering from

annual drought inducing predictable plant death. All these

results give interesting evidence of the influence of distur-

bance and climatic risks on the evolution of life span and

support the earlier cited existing theoretical literature and our

data.

Data on the relationship between life span and resource-

related climatic factors are less numerous in plants. von Arx

et al. (2006) showed a positive correlation between altitude

and life span in three forb species (two long-lived species

Penstemon venustus, Lupinus laxiflorus and one short-lived
tionary optimization of life-history traits in the sea beet Beta
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Rudbeckia occidentalis) along a 1000-m altitudinal gradient.

They also found higher annual ring widths at higher altitude,

suggesting that growth conditions were less favorable. This is

in line with our results since climatic variations along altitu-

dinal and latitudinal gradients are comparable. In these

species longer life spans might be selected by the decreasing

length of the growing season with altitude as suggested by our

model.

The percentage of plants requiring vernalization for flow-

ering per population, equivalent to age at maturity, was

significantly explained by PC2, STA and PC3, which we

previously interpreted as mortality risks due to temperature,

habitat stability and length and quality of the growth season,

respectively. These factors explain 77.95% of the total varia-

tion for vernalization requirement for flowering. 7.14% of the

total variation in age at maturity is explained by PC3, mainly

structured by the length of the growth season and mean

annual temperature, which are negatively related with

vernalization requirement. This supports the common

hypothesis that late age at maturity (vernalization require-

ment) is selected by long winters. Long cold periods indeed

(1) increase the reserves necessary to survive winter and

(2) restrict the time for storage, flowering and seed matura-

tion, thus necessitating early synchronous flowering within

years (Van Dijk et al., 1997; Boudry et al., 2002). However our

model suggests that later maturity might also be selected by

the lower resource level consecutive to shorter and colder

growth seasons. Since long winters are associated with short

growth season and thus lower resources it is impossible to

discriminate between both hypotheses in our study, and

further studies including other types of resources might be

interesting.

However the length of the growth season is not the main

factor explaining age at maturity in our study. Habitat stability

explains 54.92% of the total variation in age at maturity in sea

beet along French Northern and Atlantic coasts. Moreover, age

at maturity is also explained at 15.89% by PC2, i.e. mortality

risks induced by frost or temperature variability. This

supports the theoretical expectation that vernalization

requirement should be highly counter-selected in disturbed or

risky habitats where early reproduction is very important,

since vernalization requirement postpones first reproduction

to the subsequent year (Boudry et al., 2002). Finally, PC1 does

not explain age at maturity significantly, which is surprising

since life span and age at maturity are thought to be both

selected by mortality and resources. This can be interpreted as

a consequence of the very strong effect of disturbance on the

distribution of this trait, which could lower the relative impact

of rainwater as a resource or as a risk, and observing this effect

would then be more difficult. It can also be hypothesized that,

as in guppies (Reznick et al., 2004), one environmental factor

has differential effect on life-history traits.

In the literature, age at maturity in plants is often shown to

be positively related to latitude (Smith, 1927; Cooper, 1963;

Reinartz, 1984; Lacey, 1988; Wesselingh et al., 1994) or altitude

(Reinartz, 1984), which can be interpreted as a positive

relation with the severity of the environment and a negative

relation with the length of the growing season. On the

contrary annual desert plants are known to advance their

onset of flowering with the shortening of the growing period,
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but in such situations aridity induces an extreme mortality

risk. For example Volis (2007) showed in two annual grasses

Hordeum spontaneum and Avena sterilis an advance in the onset

of flowering with increasing aridity.

These examples show that the resource effect of

a restricted length of the growing season should be separated,

when possible, from the associated climatic risks, if any.

It appears necessary in studies on the evolution of life-history

traits in relation with climate or latitude/altitude to estimate

the relative effects of climatic risks of death and of climatic

resources, as well as to assess clearly which age classes are

affected by the mortality causes, since this will change the

predictions (Stearns, 1992).

Similar results are commonly found in animals (Blanck and

Lamouroux, 2007), although the interpretation is more diffi-

cult than in plants. In animals high temperatures might

induce more energetic expenditure due to an increased

metabolism. Moreover, there is no real growing season in

most animals, so temperature might not have a simple effect

on resources acquisition.

Evolution of both life span and age at first reproduction

(age at maturity) is possibly influenced by similar factors.

Although our empirical data did not show any significant

effect of rainwater on age at maturity, they suggest that life

span is negatively influenced by climatic sources of mortality,

by habitat disturbance and by climatic resources like length of

the growth season or average temperature. It cannot be

excluded that the evolution of these traits is influenced by

other factors correlated with the tested environmental

factors. Moreover the effect of habitat unpredictability on the

evolution of life-history traits is possible in sea beet since this

is one component of the between-year variability in climate,

YVP and YVT. Unpredictability should select for bet-hedging

strategies which could complete our model for further devel-

opment. However, our empirical observations support the

results of our model: it is highly plausible that life span and

age at maturity in sea beet became shorter under the influ-

ences of resources and extrinsic mortality.

These are to our knowledge the first field data suggesting

that life span and age at maturity might increase with less

frequent disturbance, lower climatic risk and lower resource

availability such as decreasing length of the growing season,

and the first model suggesting that climatic effects on the

evolution of these traits could be due to available resources

and not only to mortality risks. Moreover, this model and its

confrontation with experimental results suggest that in the

sea beet R0 might be less adequate than l (which is plausible

considering the metapopulational functioning of this species),

since using R0 the evolution of life span and age at maturity is

not affected by resources contrary to our empirical results.
5. Conclusion

The model we used is particular in two aspects. First, we use

two fitness criteria, lifetime reproductive success and intrinsic

rate of population growth. Though it is largely recognized that

these two criteria give different predictions (Mylius and

Diekmann, 1995; Teriokhin and Budilova, 2008) usually only

one of them is used (e.g. Stearns and Koella, 1986; Kozlowski
tionary optimization of life-history traits in the sea beet Beta
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and Wiegert, 1987; Roff et al., 2005). Second, we study the joint

impact of mortality and resource supply on life-history traits

though usually only the effect of mortality is taken into

account (a similar approach is used in Teriokhin et al., 2003).

Both the analysis of data on B. v. maritima and the results of

evolutionary modeling point to the safety of the environment

as the main factor, positively related with life span and age at

maturity in sea beet. The influence of another important

characteristic of the environment, resource availability, here,

for example, the length of the growing season, on the same

life-history traits also showed up. The theoretical support for

this observation depended essentially on the assumptions on

how density-dependence restrains population growth: either

it acts on juveniles or adults or on both. The confrontation of

our model with empirical data shows the importance of age-

dependent effects and of the choice of the optimality criterion:

as in sea beets, R0 could be less appropriate in many species

than l. Choosing R0 vs l is definitely not ‘‘a matter of taste’’

(Pasztor et al., 1996). It also shows the importance of having

precise demographic data in evolutionary ecology studies,

since demography might change parameters used in models

and, more concretely, factors influencing life histories in the

studied populations. The present approach would be more

appropriate if precise information about density-dependence

was available. We therefore suggest that future ecological

surveys, as well as future ecological models, should pay more

attention to the mechanisms of density-dependence.
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Appendix.

For the life span of one year Eq. (3) gives the following value of

size

W1 ¼
�
W1�E

0 þ ð1� s1ÞDð1� EÞg1

�1=ð1�EÞ

If we assume that W0 is much smaller than W1 (this

assumption is not very restrictive because the weight of a seed

is usually much less than the weight of a plant at the end of

the season) then we obtain approximately

W1z
�
ð1� s1ÞDð1� EÞg1

�1=ð1�EÞ

or

W1z
�
ð1� s1Þg1

�1=ð1�EÞ½Dð1� EÞ�1=ð1�EÞ

from where, in according with (6), the reproductive energy will

be
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U1z
�
1� g1

�
ð1� s1Þ

�
ð1� s1Þg1

�E=ð1�EÞ
D½Dð1� EÞ�E=ð1�EÞ

The last equation shows that optimizing U1 in respect to s1

and g1 does not depend on D which enters into the right side of

this equation as a constant multiplier. Similarly, for the life

span of two years we have

W2 ¼
�
W1�E

1 þ ð1� s2ÞDð1� EÞg2

�1=ð1�EÞ

After inserting W1 we obtain

W2z
�
ð1� s1Þg1Dð1� EÞ þ ð1� s2ÞDð1� EÞg2

�1=ð1�EÞ

or

W2z
�
ð1� s1Þg1 þ ð1� s2Þg2

�1=ð1�EÞ½Dð1� EÞ�1=ð1�EÞ

Taking into account that

U2 ¼ U1 þ
�
1� g2

�
ð1� s2ÞDWE

2QsS
1

we find

U2z
n�

1� g1

�
ð1� s1Þ

�
ð1� s1Þg1

�E=ð1�EÞþ
�
1� g2

�
ð1� s2Þ

�
ð1� s1Þg1 þ ð1� s2Þg2

�E=ð1�EÞ
QsS

1

o
D½Dð1� EÞ�E=ð1�EÞ

so that again we see that optimizing U2 in respect to s1, s2, g1 and

g2 does not depend on D, and so on.

Note that it is not so in the case of maximizing l. Indeed, for

example, for the life span of two years we obtain from the

2� 2 transition matrix the following quadratic equation for l

l2 �m1l� p1m2 ¼ 0

from where

l ¼
�

m1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 � 4p1m2

q 
�
2

Taking into account the equations

m1z
�
1� g1

�
ð1� s1Þ

�
ð1� s1Þg1

�E=ð1�EÞ
D½Dð1� EÞ�E=ð1�EÞ

m2z
�
1� g2

�
ð1� s2Þ

�
ð1� s1Þg1

þ ð1� s2Þg2

�E=ð1�EÞ
D½Dð1� EÞ�E=ð1�EÞ

p1 ¼ QsS
1

we see that l in a complex nonlinear way depends on D and

hence the optimal values of s1, g1, s2 and g2 (those which

maximize l) will also depend on D.
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