ARTICLE IN PRESS ACTOEC2471_proof 26 September 2008 1/13

ACTA OECOLOGICA XXX (2008) I-I3

Original article

Evolutionary optimization of life-history traits in the sea beet *Beta vulgaris* subsp. *maritima*: Comparing model to data

N.-C. Hautekèete^a, H. Van Dijk^a, Y. Piquot^a, A. Teriokhin^{b,*}

^aLaboratoire Génétique et Evolution des Populations Végétales, UMR 8016, CNRS, Université Lille1, F-59655 Villeneuve d'Ascq, France ^bDepartment of Biology, Section of General Ecology, Moscow Lomonosov State University, Leninskiye Gory 1, Moscow 119992, Russia

ARTICLE INFO

Article Receiv	nistory: ed 13 April 2008 ted 30 August 2008
Publis	hed online ∎
Keywo	rds:
Sea be	et
Evolut	ionary optimization
Resou	rce allocation
Dynan	nic programming
Life-hi	story traits
Age at	maturity
Life sp	ban
Verna	lization
Malth	usian coefficient
Lifetin	ne reproductive success
Densit	y-dependence
Resou	rce availability
Habita	ıt stability
Distur	bance

ABSTRACT

At evolutionary equilibrium, ecological factors will determine the optimal combination of life-history trait values of an organism. This optimum can be assessed by assuming that the species maximizes some criterion of fitness such as the Malthusian coefficient or lifetime reproductive success depending on the degree of density-dependence. We investigated the impact of the amount of resources and habitat stability on a plant's age at maturity and life span by using an evolutionary optimization model in combination with empirical data. We conducted this study on sea beet, Beta vulgaris subsp. maritima, because of its large variation in life span and age at first reproduction along a latitudinal gradient including considerable ecological variation. We also compared the consequence in our evolutionary model of maximizing either the Malthusian coefficient or the lifetime reproductive success. Both the data analysis and the results of evolutionary modeling pointed to habitat disturbance and resources like length of the growing season as factors negatively related to life span and age at maturity in sea beet. Resource availability had a negative theoretical influence with the Malthusian coefficient as the chosen optimality criterion, while there was no influence in the case of lifetime reproductive success. As suggested by previous theoretical work the final conclusion on what criterion is more adequate depends on the assumptions of how in reality density-dependence restrains population growth. In our case of sea beet data R_0 seems to be less appropriate than λ .

© 2008 Elsevier Masson SAS. All rights reserved.

Q1 **1.** Introduction

Organisms, in order to maximize their fitness, have to optimize many intrinsic traits related to reproduction and survival, i.e. life-history traits. Reproductive and survival depend on the same limiting resources (e.g. food, water, light, etc.), and are interrelated by trade-offs (Stearns, 1992). At evolutionary equilibrium, the particular set of external factors corresponding to the biotic and abiotic environment of the organism will determine its optimal strategy, i.e. the optimal

Please cite this article in press as: Hautekèete, N.-C. et al., Evolutionary optimization of life-history traits in the sea beet *Beta vulgaris* subsp. *maritima*: Comparing model to data, Acta Oecolo. (2008), doi:10.1016/j.actao.2008.08.004

 ^{*} Corresponding author. Department of Biology, Section of General Ecology, Moscow Lomonosov State University, Moscow 119992, Russia. Tel.: +7 495 423 10 93; fax: +7 495 939 43 09.
 E-mail address: terekhin_a@mail.ru (A. Teriokhin).

¹¹⁴⁶⁻⁶⁰⁹X/\$ – see front matter © 2008 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.actao.2008.08.004

ACTA OECOLOGICA XXX (2008) I-I3

combination of values of life-history traits in this specific
context (Stearns, 1976). Many studies, like ours, try to assess
the consequences of these different ecological factors on the
evolution of life-history traits.

Among the ecological factors influencing life-history 119 strategies, mortality due to external causes (predation, 120 disturbance, drought, etc.) is certainly the most studied. High 121 adult mortality due to external causes is often thought to favor 122 shorter life span, intense and precocious reproduction, with 123 annuality as the extreme possibility (Gadgil and Bossert, 1970; 124 Charnov and Schaffer, 1973; Michod, 1979; Charlesworth, 125 1980; Young, 1981; Reznick et al., 1990, 1996; Hautekèete et al., 126 2001), although the opposite is also possible (Reznick et al., 127 2004) when extrinsic mortality decreases population growth 128 rate or can be limited by greater body maintenance 129 (e.g. prey/predator system). It is noticeable that the mortality 130 regime has an impact on which criterion of optimality should 131 be used in models. One criterion, λ (population growth rate), is 132 adequate in the situation of unlimited exponential population 133 growth, and in the situation where a population is stabilized 134 by environmental stress acting uniformly on all age groups. 135 Another commonly used criterion, the lifetime reproductive 136 success of an individual, R₀, is more adequate in situations of 137 differential mortality rates between age classes (Mylius and Diekmann, 1995; Brommer, 2000; Williams and Day, 2003; 138 Teriokhin and Budilova, 2008). 139

A second ecological factor potentially able to modify the 140 optimal life-history tactic is the quantity of available 141 resources, which can be light, water, nutrients or else. Length 142 of the growing season affects indirectly the amount of avail-143 able resources in plant species by allowing photosynthesis 144 and nutrient acquisition during this period. Gadgil and Bossert 145 (1970) suggested that increasing resources should favor 146 precocious reproduction and higher reproductive effort. 147 However, Ronce and Olivieri (1997) argued that the opposite 148 prediction holds for metapopulations. Effects of resources 149 have also been included in other models through growth rate 150 or length of the growing season (e.g. Stearns and Koella, 1986; 151 Iwasa and Cohen, 1989; Berrigan and Koella, 1994), apparently 152 without any agreement on the consequences for age at 153 maturity, reproductive effort or life span.

154 It is obvious that numerous external factors are potentially 155 influencing the same life-history trait, and, as a consequence, 156 discriminating experimentally between the various factors 157 might appear complicated. Many empirical studies are set up 158 to evaluate the relationship between environmental vari-159 ability and the diversity of life-history strategies (e.g. Law 160 et al., 1977; Reinartz, 1984; Till-Bottraud et al., 1990; Young, 1990). In plants, age at maturity (age at first reproduction, in 161 years) has proved to be positively related to latitude (Smith, 162 1927; Cooper, 1963; Reinartz, 1984; Lacey, 1988; Wesselingh 163 et al., 1994) or altitude (short review in Reinartz, 1984). 164 Numerous factors, such as length of the growing season or 165 light and water availability, are related with latitude and 166 altitude and may plausibly act on life histories (Cooper, 1963; 167 Harper, 1977). Drought obviously may change optimal life 168 histories through adult extrinsic mortality (Reinartz, 1984; 169 Young, 1990) but water can act as a resource too (Harper, 1977). 170 Length of the growing season is tightly related to the quantity 171 of resources acquired during the season and at high latitudes or altitudes plants may therefore achieve less vegetative growth. Flowering in their first climatically favorable season would then weaken survival and future reproduction without compensation by sufficient current reproduction. A shorter growing season might consequently favor later age at maturity and longer life span (which are highly interrelated; see Charnov and Berrigan, 1990). Vernalization requirement for flowering, i.e. induction of flowering by exposure to low temperature during winter (Napp-Zinn, 1987), imposes a later age at maturity in higher latitudes in many plant species.

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

The sea beet B. vulgaris subsp. maritima (L.) shows a particularly high variability in life-history strategies. It occurs along the Atlantic coasts of Western Europe and of western North Africa, from Sweden to the Azores, as well as along the coasts of the Mediterranean (Letschert, 1993). Inland wild beets are also known in the south-western part of France (Desplanque et al., 1999). Mean life span (estimated per population) increases with latitude from about two years in the inland habitats of south-western France to over 10 years in North Brittany, then it decreases to about five years in the northernmost populations (Hautekèete et al., 2002). Life span's heritability has been estimated in sea beet to 0.48 among French populations (greenhouse conditions, Van Dijk unpublished data). Noteworthy heritable variability has also been described in B. v. maritima for the vernalization requirement for flowering (Boudry, 1994; Van Dijk et al., 1997; Boudry et al., 2002). In Mediterranean populations, most individuals flower without vernalization requirement (genotypes BB and Bb), whereas in northern populations all individuals require vernalization to bolt and flower (genotype bb). Between these areas, both genotypes coexist at various rates in the same population (Van Dijk et al., 1997). If germination does not occur very early in the season vernalization requirement delays first flowering until the second year, so in the present study we will consider the percentage of vernalization requirement as equivalent to the percentage of first flowering in second year (late age at maturity).

Disturbance has been suggested as an important factor in life span evolution of B. v. maritima, selecting for shorter life spans by lowering adult survival probability. In sea beet life span indeed appears to be highly associated with habitat type, which is in its turn associated with mortality regime (Hautekèete et al., 2002). This supports the earlier cited existing theoretical work (Gadgil and Bossert, 1970; Charnov and Schaffer, 1973; Michod, 1979; Charlesworth, 1980; Young, 1981; Reznick et al., 1990, 1996). Shorter growing seasons in higher latitudes were suggested to reduce growth, thus favoring a higher age at maturity (Van Dijk et al., 1997). A complication is that factors favoring a high age at maturity might also favor a long life span by allowing reproduction when the plant is more vigorous. In corollary, a long life span may also favor a high age at maturity: more time can then be spent on juvenile growth which is advantageous because larger individuals can produce more offspring. As a consequence factors suspected to influence the evolution of one life-history trait might also influence the other. It is thus difficult to determine which factors are directly implicated into life span and age at maturity evolution in the sea beet.

Our first aim was to assess specific theoretical expectations on life span and age at maturity evolution depending on

229 mortality regimes and resources (length of the growing 230 season, which can be considered as equivalent) as well as to evaluate the importance of demographic hypotheses, i.e. of 231 the chosen criterion of optimality λ or R₀, on the impact of both 232 factors. Many models of life-history evolution as a function of 233 environmental parameters have been described in the litera-234 ture, but none of them is appropriate for our purpose. First, no 235 models combine mortality and resource supply and second, 236 they rarely use both possible fitness criteria (as for example, 237 Berrigan and Koella, 1994; de Jong et al., 2000). Therefore we 238 developed a realistic model (evolutionary optimization) that 239 describes the evolution of both life-history traits (life span and 240 age at maturity), under the two categories of factors that are 241 suspected to act on the evolution of these traits (mortality 242 regime and resources), using the pre-cited optimization 243 criteria (λ and R_0). 244

Then, using empirical data in the sea beet, we assessed the respective influences of disturbance (a major source of mortality) and several climatic factors (which define the length of the growing season and therefore the level of available resources, as well as some aspects of extrinsic mortality) on life span and age at maturity. This was done by multivariate analyses conducted on disturbance estimators in the sea beet populations described in Hautekèete et al. (2002) and meteorological data.

Finally, empirical data and results of the evolutionary optimization model were confronted and discussed.

2. Materials and methods

2.1. Model

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

We supposed that the population dynamics can be adequately described by a classic Leslie transition matrix with elements m_x , the fertility at x-th age group, and p_x , the probability to survive from age x to age x + 1. For the species we model, x was expressed in years. In our simulations, where we model individual life histories from "birth" to death (without any interaction between individuals), we substituted age x by time (in years) t. A year was actually simulated over a shorter period: the growing season. Mortality was supposed to happen between the growing seasons. Technically, mortality during the growing season was ascribed to the previous interseasonal period (i.e. we considered individuals not having survived the current season as not having survived the previous winter) and in the same way mortality in the first year (the year of germination) was implicitly taken into account as reduced fertility.

The dominant eigenvalue λ of the transition matrix is 276 commonly used as a quantitative measure of Darwinian 277 fitness (Sibly, 1989; Metz et al., 1992; Kozlowski, 1993). It can be 278 shown, that λ is an adequate criterion of optimality in, at least, 279 two situations: first, in the situation of unlimited exponential 280 population growth, and second, in the situation where a pop-281 ulation is stabilized by uniform density-dependence on all age 282 groups (Mylius and Diekmann, 1995). Evolutionary optimiza-283 tion in these situations consists therefore in searching for 284 values of p_x and m_x that maximize λ . In other situations other 285 criteria can be adequate (or a simple criterion of evolutionary optimality in the above sense may not even be found). In particular, when density-dependence acts only on juveniles, or, to the contrary, only on adults, an adequate criterion is the lifetime reproductive success of an individual, R_0 (Mylius and Diekmann, 1995). Maximization of λ in the first case and maximization of R_0 in the second case are necessary and sufficient in order that the obtained strategies be ESS (Mylius and Diekmann, 1995). As in many applications it is not clear how the environment acts but the preference is often given to R_0 because of less computations needed (Kozlowski, 1993; Charnov, 1997).

The elements p_x and m_x are interrelated by trade-offs, described either by trade-off curves, which link p_x and m_x explicitly (Williams, 1966; Calow, 1979; Sibly and Calow, 1986) or through the allocation of common resources among different needs of the individual such as growth, reproduction, repair, maintenance, etc. (Kozlowski, 1991; Perrin and Sibly, 1993). An advantage of this approach, which we will use here, is that it allows modeling in more detail of the hypothetical physiological mechanisms underlying the trade-offs.

We supposed as it is usually done (Roff, 1983; Ziolko and Kozlowski, 1983; Day and Taylor, 1997) that the amount of biomass produced during one unit of time, B, is proportional, with a coefficient D, to some power E, 0 < E < 1, of an individual's biomass W

$B - DW^E$	(1	۱
$\mathbf{D} = \mathbf{D} \mathbf{W}$	(1	.,

This equation is widely accepted for describing the basic metabolism of an organism (West et al., 1999) with E = 0.67 (Rubner's law) or E = 0.75 (Kleiber's law). We tried both values in computations and obtained similar results, so only results for E = 0.67 are presented. We only considered the biomass used for growth, reproduction, and inter-seasonal survival. So we implicitly assumed that these expenses constituted a roughly fixed proportion of the total biomass produced by the individual at each moment. We considered the parameter *D* as reflecting the nutritional quality of the environment through the duration of the productive part of the season.

D also depends on the unit in which B and W are expressed. The biomass produced by an individual was divided among several needs. A fraction s_t was invested in inter-seasonal survival; the residual, $(1 - s_t)$ between growth and reproduction. The year (the growing season) was divided into two periods of duration g_t and $1 - g_t$. In the first period the residual biomass was invested in growth and instead of the linear approximation equation for W_t

$$W_{t} = W_{t-1} + g_{t}(1 - s_{t})DW_{t-1}^{E}$$
(2)

we used a more precise equation obtained by integrating the differential equation

$$\frac{\mathrm{dW}}{\mathrm{dt}} = (1 - \mathrm{s}_{\mathrm{t}})\mathrm{DW}^{\mathrm{E}}$$

over the period t - 1 to $t - 1 + g_t$:

$$W_{t} = W_{t-1+g_{t}} = \left[W_{t-1}^{1-E} + (1-s_{t})D(1-E)g_{t}\right]^{1/(1-E)}$$
(3)

(W_0 , the individual's size at birth, t = 0, is one of the parameters of the model).

In the remaining period, $1 - g_t$, the size remained constant and the residual biomass was allocated to reproduction,

Please cite this article in press as: Hautekèete, N.-C. et al., Evolutionary optimization of life-history traits in the sea beet Beta vulgaris subsp. maritima: Comparing model to data, Acta Oecolo. (2008), doi:10.1016/j.actao.2008.08.004

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

3

341

(5)

whether immediately or in the form of biomass accumulated to be used for future reproduction. The total season investment in reproduction, u_t , is given by the equation

$$u_{t} = (1 - g_{t}) (1 - s_{t}) DW_{t}^{E}$$

$$(4)$$

One additional variable, we denoted f_t , must be added to indicate whether the individual saves reproductive investment for the next year ($f_t = 0$) or liberates all ($f_t = 1$). We did not consider intermediate values.

We supposed that st was constant over the entire growing season but could differ among years, the latter also being the case for q_t and f_t . We therefore had to optimize s_t , q_t and f_t in each year. Before presenting the way in which the optimization is done, the link has to be made between the variables s_t , q_t and f_t and the transition matrix elements p_t and m_t .

We supposed that there are two potential causes for an 358 individual to die before the next season. The first cause is 359 uncontrollable by the individual and due to the severity 360 (instability) of the environment. In our simulations we 361 considered a constant survival rate Q independent of the 362 individual's age or state. The second cause of death was 363 controllable by the individual, and survival rate here was 364 taken as s_t^s , where the parameter S determines the efficiency 365 of the relative investment in survival st: the lower the value of 366 S, the higher the efficiency. We did not use the absolute value 367 of investment in survival because larger individuals were 368 supposed to need proportionally more repair (i.e. more energy 369 to maintain the structures despite various causes of damage: 370 UV radiation, sandy wind, salt, etc.).

We supposed that these two causes (they could be called environmental and physiological, or external and internal, or 372 uncontrollable and controllable) acted independently and 373 hence the overall probability to survive to the next season is 374

$$p_{\mathrm{t}} = \mathrm{Qs}_{\mathrm{t}}^{\mathrm{s}}$$

375

376

377

378

379

380

381

382

390

399

A consequence is that $p_t = 0$ if there is no investment in survival (then the individual's life span is the value of t for which $p_t = 0$). The individual can thus deliberately prevent any investment in winter survival and use all economized resources for reproduction. This means that any of both possible strategies can be chosen in our model: determinate or indeterminate life span.

383 The model allowed the accumulation of reproductive 384 investment during several years before liberating it in the 385 form of offspring. The amount of reproductive investment 386 accumulated at the end of t-th season, Ut, is equal to the sum 387 of reproductive investment accumulated over the years with 388 $f_t = 0$ since the last total release (the last year with $f_t = 1$). 389

$$U_t = U_{t-1} + u_t \tag{6}$$

where $U_0 = 0$, and U_{t-1} was reset to 0 if the reproductive 391 biomass was effectively used at the end of season (t - 1). 392

The evolutionary argument for the accumulation of 393 reproductive investment instead of an immediate use was 394 that reproductive output may not be a linear function of the 395 allocation to reproduction. We assumed, as it seems biologi-396 cally plausible, that the reproductive output m_t depends 397 nonlinearly on the liberated reproductive investment 398

$$m_{\rm t} = f_{\rm t} U_{\rm t}^{\rm C}$$

with C > 1. Such a relationship means that the gain in fecundity accelerates with investment and that it is disadvantageous to liberate small amounts.

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

We used the mathematical theory of optimal control (e.g. Bellman, 1957; Pontryagin et al., 1962) to find the optimal strategy of biomass allocation during the individual's lifetime. In the terms of this theory the time-dependent variables W_t and U_t are called the state variables of the system. A second set of variables, called control variables, was represented by st, q_t and f_t . The third basic notion in optimal control is formed by the state equations, i.e. equations which describe the dynamics of the state variables. The state equations for W_t and U_t were (3) and (6) respectively.

The question of choosing a suitable criterion of optimality is central to optimal control theory. In our case we used two criteria: the rate of population increase, λ , and the lifetime reproductive success, Ro.

The problem of optimization is formulated as searching for an optimal (i.e. maximizing the criterion of optimality) strategy of taking control decisions (i.e. of attributing values for control variables) knowing the individual's state (i.e. knowing the values of the state variables). In other words we should determine s_t , g_t and f_t as such functions

$$\mathbf{s}_t = \mathbf{s}_t(\mathbf{W}_t, \mathbf{U}_t, \mathbf{t}), \quad g_t = g_t(\mathbf{W}_t, \mathbf{U}_t, \mathbf{t}), \quad f_t = f_t(\mathbf{W}_t, \mathbf{U}_t, \mathbf{t})$$

of W_t , U_t , and t that λ or R_0 is maximized. One way to do this is to use the method of dynamic programming (Bellman, 1957; Mangel and Clark, 1988).

The central notion of dynamic programming is the so-called gain function $F(W_t, U_t, t)$. The value of this gain function should be given at t = T (where T is somewhat higher than the maximum life span of the species modeled) for all values of the state variables (which are supposed, as well as t, to be discrete). At t = T the individual is already dead so that $F(W_T, U_T, T) = 0$ for all values of the state variables. The values of the gain function at other time steps were calculated iteratively backwards from t = T - 1 to t = 0 in according with the so-called basic equation of dynamic programming. This equation allowed calculating the gain function for all values of the state variables at any time step t on the basis of knowing this function at time step t + 1. In our case the basic equation was as follows

$$F(W_t, U_t, t) = \max_{s, a, f_t} \{F(W_{t+1}, U_{t+1}, t+1)p_t + m_t\}\lambda^{-1}$$

(in the case of taking R_0 as criterion we simply set $\lambda = 1$).

Most important was to find at each iteration of age the optimal values of the control variables s_t , g_t and f_t for all sets of values of the state variables W_t and U_t , i.e. the sought optimal strategy. It can be shown (Taylor et al., 1974) that to find the maximum of λ it is sufficient to find the maximum of the left side of the Euler–Lotka equation for different values of λ and take as the result that value of λ which corresponds the maximum equal to 1. That means that we should solve the dynamic optimization problem for different values of λ and choose that value which satisfies the condition $F(W_0, U_0, 0) = 1$. This was realized by embedding the procedure of dynamic optimization on s_t , q_t and f_t into a procedure of solving equation in respect of λ by bisection method. The knowledge of the optimal strategy allowed thereafter finding the optimal dynamics of state variables W_t and U_t by iterating forward the state equations (3) and (6).

5

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

We tested the dependence of the optimal life-cycle strat-457 egies on the model parameters. Main attention was given to 458 the influence of parameters D and Q which we associate with 459 environmental resource supply and winter survival. The 460 range of variation for the survival Q (probability to survive the 461 winter considering external causes of death only) was inves-462 tigated almost entirely. As regards the resource supply D, its 463 range of variation was chosen in such a way as to obtain 464 biologically plausible and interesting ranges of the life-history 465 traits. 466

2.2. Data

467

468

469

2.2.1. Sea beet

470 In the Beta species-complex, the sea beet, B, vulgaris subsp. 471 maritima (L.) Arcangeli, has a particularly variable life cycle 472 (Letschert, 1993), from long-lived with vernalization require-473 ment for flowering in the northern part of its distribution area 474 (Atlantic coasts of France, Belgium, the Netherlands, Great-475 Britain and of the western Baltic sea) to short-lived semel-476 parous without vernalization requirement for flowering in the 477 Mediterranean area (Letschert, 1993) and in the inland 478 populations of south-western France.

479 Sea beet overwinters as vegetative rosettes, which are produced at the end of the reproductive season. Except for the 480 seeds, all other aerial parts (stems, leaves and flowers) dry out. 481 Thick roots store resources, thus allowing overwintering and 482 a quick growth in the following spring. Growth is indetermi-483 nate and although plant size variability over the distribution 484 area has not been studied formally there is a relationship with 485 life span. Except for the possible role of habitat disturbance on 486 life span evolution (Hautekèete et al., 2002), to our knowledge 487 few data are available on potential mortality sources, 488 although we observed that sea beet, like cultivated beet, is 489 attacked by many pathogens. 490

Seeds were collected in 1989 all over the French distribu-491 tion area of B. v. maritima (see Van Dijk et al., 1997; Hautekèete 492 et al., 2002). Plants were grown from seed in a glasshouse, in 493 order to avoid external causes of mortality by controlling 494 environmental conditions. Life span and the percentage of 495 individuals requiring vernalization for flowering were 496 estimated for each population. In this paper we restrict the 497 data to the 94 populations for which we had homogeneous 498 meteorological data: populations from the French Atlantic 499 and Mediterranean coasts, Channel Islands (Jersey and 500 Guernsey) and inland (south-western France).

501 Meteorological data were used to describe the quality 502 and/or the length of the growing season. We selected 29 locations along the French distribution of B. v. maritima for 503 which meteorological data were available from 1961 to 1990 504 (MétéoFrance, 2000) to describe the climate in the study area. 505 Sea beet populations were attributed to the nearest Météo-506 France locality. We chose synthetic parameters because they 507 summarize meteorological conditions, which reduces the 508 number of correlations between parameters and limits the 509 risks of putting unintentionally too much weight on some 510 aspects of the climate in the multivariate analyses. 511

512 513 We selected nine meteorological parameters: (1) the number of months between the first and last frosts over 30 years (FRO); (2) an estimate of the variability of temperatures over years (YVT, the difference between the values of the highest and the lowest quintiles for annual temperature); (3) an estimate of the variability of precipitation over years (YVP, same calculation). FRO gives the length of the period of potential mortality associated with winter. YVT reveals the variability of temperatures over years. These parameters are therefore mainly associated with mortality due to temperature, e.g. frost. YVP can be viewed as potentially associated with mortality due to lack or excess of water.

(4) The number of months with a minimum temperature higher than 8 °C (MIN8), during which we suppose that vernalization is negligible; (5) annual temperature (TEMP, in °C) and (6) annual precipitation (PPT, in mm). MIN8 might be an excellent estimate of the length of the growth season. TEMP (annual temperature) can be viewed as related with resources since a longer period of potential growth and a higher mean temperature allow a larger accumulation of resources and a higher metabolism. For similar reasons PPT (annual precipitation) can be considered as a resource too, as long as it varies between values that are high enough to allow survival but too low to fully meet plants' requirements.

(7) An estimate of the between-season variability of temperatures (SDT, the standard deviation of temperatures calculated from the 12 monthly mean temperatures), (8) an estimate of the between-season variability of precipitation (SDP, same calculation); (9) IPT follows the scale of ombrothermic diagrams. It is an index of water availability. This index might be interpreted as a resource when it is high, but might correspond to a climatic risk of mortality when it is very low, i.e. associated with high annual temperatures. SDP and SDT can be viewed as estimates of the amplitude of seasonality, and as such could be related with climatic mortality risks (a large SDT might correspond to very low temperatures during winter and/or to drought during summer, and a large SDP might be associated with summer drought) (Table 1). 02

To estimate disturbance, we established for each sea beet population a variable based on habitat type: habitat stability (STA; Hautekèete et al., 2002). We defined seven categories for STA: (1) margin of fields, (2) near-building area or roadside, (3) harbour or oyster basin, (4) beach or dune, (5) canal or estuary, (6) rocks or seawall and (7) cliff. The values correspond to probable disturbance rate, from the most disturbed (1, margins of fields, where beets are regularly mown or eliminated by hand or by herbicide treatments) to the least disturbed (7, natural cliffs) (Hautekèete et al., 2002). For each of the 29 localities we finally calculated from the surrounding populations (1) average stability index (STA) (2) mean life span (LSP) and (3) the number of individuals with or without vernalization requirement (bb vs B-) (Van Dijk et al., 1997; Hautekèete et al., 2002). We chose to pool populations rather than to attribute the climatic values of each MétéoFrance site to surrounding populations for two reasons. First this limited the risk of putting unequal weights on the climatic values of MétéoFrance sites depending on the number of surrounding populations. Second, life-history evolution in a population is the consequence of selection pressures on all populations that exchange genes regularly. As a consequence genotypes integrate selective pressures on a larger area than the population and thus pooling populations better reflects reality.

ACTA OECOLOGICA XXX (2008) I-I3

Table 1 – Abbreviations of the ecological parameters and
life-history traits

573	Abbreviation	Description
575	IPT	Index of water
576		availability, in mm/°C
577	MIN8	The number
578		temperature higher than 8 °C
579	FRO	The number
580		of months between
581		the first and last frosts
582	YVT	Between-year variability
583	VI /D	of temperatures
584	IVF	of precipitation
585	SDT	Between-season variability
586		of temperatures
587	SDP	Between-season variability
588	TEMD	of precipitation
580	I LIVIP	in °C
500	PPT	Annual precipitation
501		in mm
502	STA	Habitat stability index
502	LSP	Mean life
504	bb	Percentage of plants
505	00	requiring vernalization (late maturity)
595		in the populations
590 597	See text for details.	

2.3. Data analysis

We first calculated the correlation matrix between all climatic and habitat variables, considering the 29 MétéoFrance sites, which revealed 19 significant ($\alpha = 0.05$) correlations among which 4 significant correlations between STA and the climatic factors. The latter correlations were mainly due to the locali-zation of very unstable habitats (STA \leq 3) in a restricted area from Agen to the Mediterranean (Hautekèete et al., 2002) with obvious climatic similarities that were confirmed by a Prin-cipal Component Analysis conducted on the 9 meteorological parameters for the 29 sites (not shown). Furthermore this large set of ecologically similar sites, compared with pop-ulations along the latitudinal gradient, might unbalance our analyses. Moreover, populations from Agen to the Mediterra-nean are phylogenetically separated from the other French populations (Desplanque et al., 1999). This led us to consider the data from this area with some caution. We then decided to restrict our analyses to data from Northern France to Biarritz (22 sites).

We conducted a Principal Component Analysis on the 9 meteorological factors (based on the correlation matrix). We only considered the Principal Components (PCs) with eigen-values higher than 1. We checked that this arbitrary choice did not significantly affect the interpretation of the results. We then interpreted these significant PCs in order to identify the main factors possibly implicated in life span and vernalization requirement distribution in sea beet.

In order to assess which environmental characteristics explained the life span (LSP) or the percentage of plants

requiring vernalization (bb vs B-), we used stepwise regression analyses in which the life-history traits were the dependent variables whereas STA and the scores of the sites on PCs were the independent variables ($\alpha_{to-enter} = 0.05$; $\alpha_{to-exclude} = 0.05$). Among all variables, only the percentage of plants requiring vernalization departed significantly from normality (Ryanjoiner test). For that particular trait the stepwise analysis was consequently conducted on the binomial variable "number of individuals requiring vernalization for flowering" vs "number of individuals without vernalization requirement for flowering" (logistic regression, data described in Van Dijk et al., 1997, mean number of individuals = 56.23, s.d. = 69.12). Deviances were obtained by a regression analysis (logistic regression for vernalization requirement) that incorporated the significant factors from the stepwise analysis, ordered by decreasing deviances in the stepwise. The part of variance explained by each factor or axis was calculated as the ratio of its deviance on the null deviance of the model. PCA and regressions were conducted using Statistica 7.0 (StatSoft Inc., 2004) and R_{2.6.1} (R Development Core Team, 2007) respectively.

3. Results

3.1. Model

In Figs. 1–4 we present the optimal strategies obtained for *D* (resource supply) varying from 0.5 to 3 and *Q* (extrinsic survival) varying from 0.05 to 0.99. The parameters *C* and *S* were fixed: C = 2 and S = 0.5. The values of parameters *C* and *S* were chosen in such a way as to obtain a large range of life spans, from annuality to large values of 15–20 years, which fits well the sea beet maximum life span (over 15 years, Haute-kèete et al., 2002 and unpublished data) and which approximates indeterminate life span (in our simulations, the strategies for life spans of 15–20 years did not differ much from those of indeterminate life spans). It was also taken into

Fig. 1 – Dependence of the maturity age (white squares, in years) on resources (D; provisional units) and survival (Q; environment-related probability to survive the winter) for the case when λ is used as optimality criterion (C = 2, E = 0.67, S = 0.5).

ARTICLE IN PRESS ACTOEC2471_proof
26 September 2008
7/13

ACTA OECOLOGICA XXX (2008) I-I3

Fig. 2 – Dependence of the maximum life span (white squares, in years) on resources (D; provisional units) and survival (Q; environment-related probability to survive the winter) for the case when λ is used as optimality criterion (C = 2, E = 0.67, S = 0.5).

account that real values of λ should not differ greatly from 1, hence the ones obtained in modeling should not deviate much from 1 as well.

Fig. 1 shows how age at maturity depended on resources and survival when λ is used as optimality criterion. Fig. 2 illustrates the dependence of maximum life span on the same parameters for the same criterion. We may observe that both age at maturity and maximum life span increased when survival increased and/or resource supply decreased. The shortest maximum life span equal to 1 year was optimal when resources were abundant and/or survival was low. With less resources and higher survival, annual life cycles transformed firstly into biennial ones and then to life cycles of 3, 4, 5 and more years. For very low resource levels and sufficiently high survival the maximum life span became practically

Fig. 3 – Dependence of the maturity age (white squares, in years) on resources (D; provisional units) and survival (Q; environment-related probability to survive the winter) for the case when R_0 is used as optimality criterion (C = 2, E = 0.67, S = 0.5).

indeterminate. Age at maturity in such situations and with the described values of the parameters reached 10 years.

Figs. 3 and 4 show the dependence of age at maturity and maximum life span on resources and survival when lifetime reproductive success R_0 was used as the criterion. We see, in particular, that neither age at maturity nor maximum life span depended on resource supply (for the analytical approach – see the Appendix). Growth became indeterminate for very rich resource supply (D > 2.5), reproduction occurred year after year following the first flowering.

3.2. Data

The correlation matrix conducted on 22 sites showed 13 significant correlations ($\alpha = 0.05$; Table 2). The PCA conducted on climatic factors gave 3 Principal Components (PCs) with eigenvalues higher than 1, explaining 86.12% of the total variance (Table 3). The most important variables (factor loading > 0.65) structuring PC1 were IPT, YVP, SDP, and PPT (all with negative coefficients on the axis). The most important ones for PC2 were FRO and YVT (positive values). The most important ones for PC3 were MIN8 and TEMP (positive values).

The stepwise regression conducted on LSP as a dependent variable with STA and scores of the sites on the 3 main PCs as independent variables gave the following regression: LSP = $2.63^{**} - 0.55^{*}$ PC2 + 0.73^{***} STA + 0.33^{**} PC1 - 0.32^{*} PC3 (*p*-values: ***<0.001; **<0.01; *<0.05). The overall regression explained 80.26% of the total variation. PC2, STA, PC1 and PC3 explained respectively 33.69%, 33.18%, 7.53% and 5.84% of the total variation for LSP.

The logistic stepwise regression conducted on the number of individuals with vs without vernalization requirement as a dependent variable with STA and scores of the sites on the 3 main PCs as independent variables gave the following regression: logit(bb frequency) = $0.49^{ns} - 0.85^{***}$ PC2 + 0.95^{**} STA - 0.93^* PC3 (*p*-values: ***<0.001; **<0.01; *<0.05; ^{ns}non-significant). The overall regression explained 77.95% of the total variation. PC2, STA and PC3 explained respectively 15.89%, 54.92% and 7.14% of the total variation for bb frequency.

4. Discussion

The modeling (Figs. 1-4) of the dependence of the evolutionary optimal values of age of maturity and maximum life span on resources (parameter D) and on the safety of the environment (parameter Q) demonstrated roughly the same tendency. Long life span and later maturity are optimal for poorer and safer environments. This theoretical expectation is supported by sea beet in which long life span and later maturity correlate. However, in sea beet late-flowering genotypes flower at the latest in the second year (Boudry et al., 2002; Hautekèete et al., 2002). It is possible that the range of values for disturbance or resources encountered by sea beets effectively select for flowering in the first or second year. Another explanation would be that the evolution of later age at maturity simply is impossible in the sea beet due to a lack of the required genetic variation, physiological constraints, etc. (Antonovics and van Tienderen, 1991).

Please cite this article in press as: Hautekèete, N.-C. et al., Evolutionary optimization of life-history traits in the sea beet Beta vulgaris subsp. maritima: Comparing model to data, Acta Oecolo. (2008), doi:10.1016/j.actao.2008.08.004

ACTA OECOLOGICA XXX (2008) I-I3

Fig. 4 – Dependence of the maximum life span (white squares, in years) on resources (D; provisional units) and survival (Q; environment-related probability to survive the winter) for the case when R_0 is used as optimality criterion (C = 2, E = 0.67, S = 0.5).

There are some interesting particularities in the results with respect to the optimality criterion used in computations. If lifetime reproductive success (R_0) is used as optimality criterion the effect of resource availability does not appear in modeling (Figs. 3 and 4). On the contrary, if we use the Malthusian parameter (λ) as a criterion of evolutionary optimality the effect of resources is similar to (and even more expressed than) the effect of environmental safety (Figs. 1 and 2). The problem of the choice of the criterion is an important one. Neither of these two fitness criteria would be perfectly adequate for many species. As noticed previously, λ is an adequate criterion of optimality when the exponential population growth is unlimited, or when the population is stable and this stability is kept by uniform density-dependence on all age groups. Exponential population growth is certainly not unlimited in non-pioneer plants, and purely uniform environmental pressure acting constantly on all age classes is not very probable. When density-dependence acts only on juveniles or on adults, the adequate criterion is R₀ but this seems also

unlikely. The use of R_0 would therefore not perfectly match reality either. It is probable that in many species environmental stresses act both on juveniles and adults but not uniformly: there could be a stronger pressure either on juveniles or on adults. Similarly, years without and years with age-dependent external mortality may alternate. Unfortunately empirical demographic data that are precise enough to be confronted to these hypotheses are not available for sea beet, nor, to our knowledge, for most species in general.

We presented results that were obtained with the apparently most realistic parameter values. Nevertheless, some details of the model, e.g. the abruptness of the sigmoid relationship between reproductive output and reproductive investment (results not shown), may modulate the resource effect on optimal life history (but never suppress it). Moreover, this model could be completed. Theoretical studies of the evolution of life histories often show that models based on a metapopulation give a prediction different from singlepatch models (de Jong et al., 2000; Ronce and Olivieri, 1997). Due to lower density-dependence in the recently colonized populations of a metapopulation, generation time is expected to be lower. de Jong et al. (2000) observed earlier flowering of the monocarpic perennial Carlina vulgaris than expected in a single patch. Local extinction and colonization may also occur to a variable extent in sea beet, in particular in inland populations growing in man-disturbed habitats (Van Dijk and Desplangue, 1999). A logical further extension of our study would therefore be to develop a metapopulation model that could be compared to a single-patch model to test fitness measures which could be more adequate in that context (Metz and Gyllenberg, 2001). Finally, our model does not consider explicitly the accumulation of deleterious mutations with vanishing selection intensity (evolution of senescence). However since life-history optimization methods include trade-offs between investments into reproduction vs maintenance, our model is in complete agreement with the theories of antagonistic pleiotropy (Williams, 1957) and of the disposable soma (Shanley and Kirkwood, 2000). Q3

Empirical data suggest that sea beet life span may be explained by several climatic factors and by habitat stability. The Principal Component Analysis on 9 climatic factors for 22 localities along French coasts (from Northern France to southern Atlantic coast) gives 3 Principal Components (PCs)

	IPT	MIN8	FRO	YVT	YVP	SDT	SDP	TEMP	PPT
MIN8	-0.04 ns								
FRO	0.30 ns	-0.35 ns							
YVT	0.08 ns	-0.30 ns	0.81***						
YVP	0.54**	0.08 ns	0.14 ns	0.05 ns					
SDT	-0.20 ns	-0.03 ns	0.58**	0.68***	-0.04 ns				
SDP	0.67**	0.31 ns	-0.21 ns	-0.50*	0.57**	-0.60**			
TEMP	-0.01 ns	0.64**	-0.22 ns	-0.18 ns	0.41 ns	0.18 ns	0.32 ns		
PPT	0.90***	0.24 ns	0.16 ns	0.01 ns	0.70***	-0.14 ns	0.75***	0.42 ns	
STA	0.01 ns	-0.19 ns	-0.23 ns	-0.25 ns	-0.03 ns	-0.47*	0.04 ns	-0.29 ns	-0.08 n

Values are Pearson correlations. See text for more details and Table 1 for abbreviations. ns = non-significant at $\alpha = 0.05$; **p*-values ≤ 0.05 ; ***p*-values ≤ 0.01 ; ***p*-values ≤ 0.001 .

Please cite this article in press as: Hautekèete, N.-C. et al., Evolutionary optimization of life-history traits in the sea beet Beta vulgaris subsp. maritima: Comparing model to data, Acta Oecolo. (2008), doi:10.1016/j.actao.2008.08.004

9

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

Table 3 – PCA conducted the climatic factors as variables and 22 MétéoFrance sites from Northern France to the southern Atlantic coast as cases PC1 PC2 PC3 Eigenvalue 3.52 2.59 1.64 % of the total variance 39.06 28.81 18.24 Cumulative % 39.06 67.87 86.12 IPT -0.680.55 -0.36MIN8 -0.44 -0.300.68 FRO 0.28 0.89 -0.05 YVT 0.46 0.81 0.13 YVP -0.680.45 0.09 SDT 0.50 0.56 0.58 SDP -0.94 -0.03 -0.20 TEMP -0.50 -0.05 0.80

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

PPT

Eigenvalues and percentage of the total variance explained by the Principal Components (PCs), and factor coordinates of the variables are based on correlations. See Table 1 for abbreviations of the ecological factors.

-0.85

0.48

0.01

934 with eigenvalues higher than 1. The first retained Principal 935 Component (PC1) is mainly structured by annual average precipitation (PPT), precipitation variability among (SDP) and 936 over years (YVP), and water availability weighted by mean 937 temperature (IPT), i.e. several aspects of water availability that 938 can be associated either with resources or with mortality risks 939 (see material and methods). PC2 is mainly structured by the 940 length of the period of potential mortality associated with 941 winter (FRO), and by temperature variability between years 942 (YVT). YVT decreases with decreasing climatic stability and 943 thus with increasing average mortality risk. Although YVT 944 reflects climatic unpredictability for temperatures, it also 945 increases average mortality. This axis is therefore mainly 946 associated to mortality due to temperature, e.g. frost periods. 947 Finally PC3 is structured by MIN8 and TEMP, i.e. the number of 948 months with a minimum temperature higher than 8 °C and 949 annual temperature. We can then consider that this axis is 950 structured by resources (or length or the growth season as 951 defined earlier) since (1) we took MIN8 as a good estimate of 952 the length of the growth season and (2) a higher mean 953 temperature during growth season might allow a higher 954 metabolism and a larger accumulation of resources.

955 Sea beet life span along French Northern and Atlantic 956 coasts is well explained by these three PCA axes and by STA. 957 They indeed altogether describe 80.26% of its total variation. 958 Temperature-related mortality risks (PC2, structured by FRO 959 and YVT) explain 33.69% of life span variation along the French Atlantic coast in sea beet. FRO and YVT are negatively 960 related to life span, suggesting that mortality due to extreme 961 temperatures like frost might have selected for shorter life 962 span in some sea beet populations. The estimate of habitat 963 stability (STA) significantly explains 33.18% of life span 964 variability in sea beet populations in this area. This supports 965 the positive impact of habitat stability on life span evolution in 966 sea beet, which has been described earlier in Hautekèete et al. 967 (2002). PC1 explains 7.53% of the total life span variation. Its 968 main structuring factors IPT, YVP, SDP and PPT, are negatively 969 related with life span. On the one hand, PPT and IPT can be

viewed as water availability estimates. Their negative relation with life span would then suggest that life span might decrease with increasing water resource. On the other hand PC1 is also structured by YVP and SDP which mainly describe the amplitude of rainfall variations between years and between seasons. As such they describe the risk for a sea beet of encountering unfavorable watering conditions like drought. Since they are negatively related with life span, it can be interpreted as the selection of shorter life span with increasing drought risks. Therefore PC1 does not allow discriminating between mortality risks and resource effect associated with rainfall. Finally, PC3 and its two main parameters, namely MIN8 and TEMP, are negatively related with life span. Since this axis is mainly associated to the length of the growth season, this suggests that higher resource levels related with temperature and longer growth seasons might have selected for shorter life span in sea beet populations. Length of the growth season significantly explains about 5.84% of life span variation.

Our empirical data therefore suggest that (1) mortality due to climate, like extreme temperatures, or to habitat stability and (2) resource-related climatic factors such as the length of the growth season or mean annual temperature, apparently explain altogether a large part of the life span variability in sea beet from Northern France to Southern Atlantic coast. Rainwater availability explains a part of life span distribution too, although this is difficult to know from our data if this is due to resources or mortality risks.

These categories of ecological effects on life span evolution have already been documented in the literature. First, increasing life span with habitat stability has been shown in many species or systems. For example, annual species tend to be more represented in arable fields, while in human settlements their proportion is reduced at the expense of species with longer life spans - biennials and perennials, probably because arable land is disturbed every year due to agricultural management, whereas human settlements contain a mosaic of frequently disturbed sites and of sites that are occasionally left undisturbed for several years (Lososova et al., 2006). Hill et al. (2002) suggest that annuality in northern Europe is generally an indication of human disturbance but they recognize that it can also result from unfavorable seasons like summer drought, which is a climatic source of mortality. Moreover, Till-Bottraud et al. (1990) showed the evolution of shorter life span in Poa annua in dry sites compared with the regularly watered golf sites of the same area, which can be interpreted as the consequence of the climatic risk induced by drought. Finally van Kleunen (2007) showed that Mimulus guttatus is locally adapted to the permanent vs sporadic presence of water and is annual in populations suffering from annual drought inducing predictable plant death. All these results give interesting evidence of the influence of disturbance and climatic risks on the evolution of life span and support the earlier cited existing theoretical literature and our data.

Data on the relationship between life span and resourcerelated climatic factors are less numerous in plants. von Arx et al. (2006) showed a positive correlation between altitude and life span in three forb species (two long-lived species *Penstemon venustus, Lupinus laxiflorus* and one short-lived

Rudbeckia occidentalis) along a 1000-m altitudinal gradient. 1027 1028 They also found higher annual ring widths at higher altitude, suggesting that growth conditions were less favorable. This is 1029 in line with our results since climatic variations along altitu-1030 dinal and latitudinal gradients are comparable. In these 1031 species longer life spans might be selected by the decreasing 1032 length of the growing season with altitude as suggested by our 1033 model. 1034

The percentage of plants requiring vernalization for flow-1035 ering per population, equivalent to age at maturity, was 1036 significantly explained by PC2, STA and PC3, which we 1037 previously interpreted as mortality risks due to temperature, 1038 habitat stability and length and quality of the growth season, 1039 respectively. These factors explain 77.95% of the total varia-1040 tion for vernalization requirement for flowering. 7.14% of the 1041 total variation in age at maturity is explained by PC3, mainly 1042 structured by the length of the growth season and mean 1043 annual temperature, which are negatively related with 1044 vernalization requirement. This supports the common 1045 hypothesis that late age at maturity (vernalization require-1046 ment) is selected by long winters. Long cold periods indeed 1047 (1) increase the reserves necessary to survive winter and 1048 (2) restrict the time for storage, flowering and seed matura-1049 tion, thus necessitating early synchronous flowering within years (Van Dijk et al., 1997; Boudry et al., 2002). However our 1050 model suggests that later maturity might also be selected by 1051 the lower resource level consecutive to shorter and colder 1052 growth seasons. Since long winters are associated with short 1053 growth season and thus lower resources it is impossible to 1054 discriminate between both hypotheses in our study, and 1055 further studies including other types of resources might be 1056 interesting. 1057

However the length of the growth season is not the main 1058 factor explaining age at maturity in our study. Habitat stability 1059 explains 54.92% of the total variation in age at maturity in sea 1060 beet along French Northern and Atlantic coasts. Moreover, age 1061 at maturity is also explained at 15.89% by PC2, i.e. mortality 1062 risks induced by frost or temperature variability. This 1063 supports the theoretical expectation that vernalization 1064 requirement should be highly counter-selected in disturbed or 1065 risky habitats where early reproduction is very important, 1066 since vernalization requirement postpones first reproduction 1067 to the subsequent year (Boudry et al., 2002). Finally, PC1 does 1068 not explain age at maturity significantly, which is surprising 1069 since life span and age at maturity are thought to be both 1070 selected by mortality and resources. This can be interpreted as 1071 a consequence of the very strong effect of disturbance on the 1072 distribution of this trait, which could lower the relative impact of rainwater as a resource or as a risk, and observing this effect 1073 would then be more difficult. It can also be hypothesized that, 1074 as in guppies (Reznick et al., 2004), one environmental factor 1075 has differential effect on life-history traits. 1076

1077In the literature, age at maturity in plants is often shown to1078be positively related to latitude (Smith, 1927; Cooper, 1963;1079Reinartz, 1984; Lacey, 1988; Wesselingh et al., 1994) or altitude1080(Reinartz, 1984), which can be interpreted as a positive1081relation with the severity of the environment and a negative1082relation with the length of the growing season. On the1083contrary annual desert plants are known to advance their

but in such situations aridity induces an extreme mortality risk. For example Volis (2007) showed in two annual grasses *Hordeum spontaneum* and *Avena sterilis* an advance in the onset of flowering with increasing aridity. 1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

These examples show that the resource effect of a restricted length of the growing season should be separated, when possible, from the associated climatic risks, if any. It appears necessary in studies on the evolution of life-history traits in relation with climate or latitude/altitude to estimate the relative effects of climatic risks of death and of climatic resources, as well as to assess clearly which age classes are affected by the mortality causes, since this will change the predictions (Stearns, 1992).

Similar results are commonly found in animals (Blanck and Lamouroux, 2007), although the interpretation is more difficult than in plants. In animals high temperatures might induce more energetic expenditure due to an increased metabolism. Moreover, there is no real growing season in most animals, so temperature might not have a simple effect on resources acquisition.

Evolution of both life span and age at first reproduction (age at maturity) is possibly influenced by similar factors. Although our empirical data did not show any significant effect of rainwater on age at maturity, they suggest that life span is negatively influenced by climatic sources of mortality, by habitat disturbance and by climatic resources like length of the growth season or average temperature. It cannot be excluded that the evolution of these traits is influenced by other factors correlated with the tested environmental factors. Moreover the effect of habitat unpredictability on the evolution of life-history traits is possible in sea beet since this is one component of the between-year variability in climate, YVP and YVT. Unpredictability should select for bet-hedging strategies which could complete our model for further development. However, our empirical observations support the results of our model: it is highly plausible that life span and age at maturity in sea beet became shorter under the influences of resources and extrinsic mortality.

These are to our knowledge the first field data suggesting that life span and age at maturity might increase with less frequent disturbance, lower climatic risk and lower resource availability such as decreasing length of the growing season, and the first model suggesting that climatic effects on the evolution of these traits could be due to available resources and not only to mortality risks. Moreover, this model and its confrontation with experimental results suggest that in the sea beet R_0 might be less adequate than λ (which is plausible considering the metapopulational functioning of this species), since using R_0 the evolution of life span and age at maturity is not affected by resources contrary to our empirical results.

5. Conclusion

The model we used is particular in two aspects. First, we use two fitness criteria, lifetime reproductive success and intrinsic rate of population growth. Though it is largely recognized that these two criteria give different predictions (Mylius and Diekmann, 1995; Teriokhin and Budilova, 2008) usually only one of them is used (e.g. Stearns and Koella, 1986; Kozlowski

1141and Wiegert, 1987; Roff et al., 2005). Second, we study the joint1142impact of mortality and resource supply on life-history traits1143though usually only the effect of mortality is taken into1144account (a similar approach is used in Teriokhin et al., 2003).

Both the analysis of data on B. v. maritima and the results of evolutionary modeling point to the safety of the environment as the main factor, positively related with life span and age at maturity in sea beet. The influence of another important characteristic of the environment, resource availability, here, for example, the length of the growing season, on the same life-history traits also showed up. The theoretical support for this observation depended essentially on the assumptions on how density-dependence restrains population growth: either it acts on juveniles or adults or on both. The confrontation of our model with empirical data shows the importance of age-dependent effects and of the choice of the optimality criterion: as in sea beets, R_0 could be less appropriate in many species than λ . Choosing R₀ vs λ is definitely not "a matter of taste" (Pasztor et al., 1996). It also shows the importance of having precise demographic data in evolutionary ecology studies, since demography might change parameters used in models and, more concretely, factors influencing life histories in the studied populations. The present approach would be more appropriate if precise information about density-dependence was available. We therefore suggest that future ecological surveys, as well as future ecological models, should pay more attention to the mechanisms of density-dependence.

Uncited reference

Venable, 1984.

Acknowledgements

We thank Ch. Luczak, S. Billiard, S. Le Cadre, F. Roux and H. FrHrot for statistical advice. This work was supported by the Russian Foundation for Basic Research (Grant No. 07-04-00521).

Appendix.

For the life span of one year Eq. (3) gives the following value of size

$$W_1 = \left[W_0^{1-E} + (1-s_1)D(1-E)g_1\right]^{1/(1-E)}$$

If we assume that W_0 is much smaller than W_1 (this assumption is not very restrictive because the weight of a seed is usually much less than the weight of a plant at the end of the season) then we obtain approximately

$$W_1 \approx [(1-s_1)D(1-E)q_1]^{1/(1-E)}$$

or

$$W_1 \approx [(1 - s_1)g_1]^{1/(1-E)} [D(1 - E)]^{1/(1-E)}$$

from where, in according with (6), the reproductive energy will be

$$U_1 \approx (1 - g_1) (1 - s_1) [(1 - s_1)g_1]^{E/(1-E)} D[D(1 - E)]^{E/(1-E)}$$

The last equation shows that optimizing U_1 in respect to s_1 and g_1 does not depend on D which enters into the right side of this equation as a constant multiplier. Similarly, for the life span of two years we have

$$W_2 = \left[W_1^{1-E} + (1-s_2)D(1-E)g_2\right]^{1/(1-E)}$$

After inserting W_1 we obtain

$$W_2 \approx \left[(1 - s_1)g_1 D(1 - E) + (1 - s_2) D(1 - E)g_2 \right]^{1/(1 - E)}$$

or

$$W_2 \approx \left[(1-s_1)g_1 + (1-s_2)g_2 \right]^{1/(1-E)} \left[D(1-E) \right]^{1/(1-E)}$$

Taking into account that

$$U_2 = U_1 + (1 - g_2) (1 - s_2) DW_2^E Qs_1^S$$

we find

$$U_{2} \approx \left\{ \left(1 - g_{1}\right) \left(1 - s_{1}\right) \left[(1 - s_{1})g_{1} \right]^{E/(1 - E)} + \left(1 - g_{2}\right) \left(1 - s_{2}\right) \right.$$

$$\left[(1-s_1)g_1+(1-s_2)g_2\right]^{E/(1-E)}Qs_1^S\Big\}D[D(1-E)]^{E/(1-E)}$$

so that again we see that optimizing U_2 in respect to s_1 , s_2 , g_1 and g_2 does not depend on D, and so on.

Note that it is not so in the case of maximizing λ . Indeed, for example, for the life span of two years we obtain from the 2×2 transition matrix the following quadratic equation for λ

$$\lambda^2 - m_1\lambda - p_1m_2 = 0$$

from where

$$\lambda = \left(m_1 \pm \sqrt{m_1^2 - 4p_1 m_2}\right) / 2$$
1228
1229
1230

Taking into account the equations

$$m_1 \approx (1 - g_1) (1 - s_1) [(1 - s_1)g_1]^{E/(1 - E)} D[D(1 - E)]^{E/(1 - E)}$$

$$m_2 \approx (1 - g_2) (1 - s_2) [(1 - s_1)g_1 + (1 - s_2)g_2]^{E/(1 - E)} D[D(1 - E)]^{E/(1 - E)}$$

$$p_1 = Qs_1^S$$

we see that λ in a complex nonlinear way depends on *D* and hence the optimal values of s_1 , g_1 , s_2 and g_2 (those which maximize λ) will also depend on *D*.

REFERENCES

Antonovics, J., van Tienderen, P.H., 1991.

- Ontoecogenophyloconstraints? The chaos of constraint terminology. Trends in Ecology and Evolution 6, 166–168. Bellman, R., 1957. Dynamic Programming. Princeton University Press, Princeton, NY.
- Berrigan, D., Koella, J.C., 1994. The evolution of reaction norms: simple models for age and size at maturity. Journal of Evolutionary Biology 7, 549–566.

ANTICLE	IN FILESS ACTOEC24/1_proof \blacksquare 26 September 2008 \blacksquare 12
12 ACTA OECOLOGICA	A XXX (2008) I-I3
Blanck, A., Lamouroux, N., 2007. Large-scale intraspecific	Law, R., Bradshaw, A.D., Putwain, P.D., 1977. Life-history variatio
variation in life-history traits of European freshwater fish.	in Poa annua. Evolution 31, 233–246.
Journal of Biogeography 34, 862–875.	Letschert, J.P.W., 1993. Beta Section Beta: Biogeographical Pattern
Boudry, P., 1994. Evolution des caractères de cycle de vie	of Variation and Taxonomy. Wageningen Agricultural
dans les populations de betteraves sauvages et adventices	University Papers 93, pp. 1–155.
(Beta vulgaris ssp. maritima). Thèse de Doctorat, Paris 6,	Lososova, Z., Chytry, M., Kuhn, I., Hajek, O., Horakova, V., Pysek, F
Paris, France.	Tichy, L., 2006. Patterns of plant traits in annual vegetation o
requirement of wild beet <i>Beta vulgaris</i> ssp. maritima: among	Fology Evolution and Systematics 8, 69–81
population variation and its adaptive significance. Journal of	Mangel M Clark C 1988 Dynamical Modeling in Behavioral
Ecology 90, 693–703.	Ecology. Princeton University Press, Princeton, NY.
Brommer, J.E., 2000. The evolution of fitness in life-history theory.	Metz, J.A.J., Gyllenberg, M., 2001. How should we define fitness in
Biological Review 75, 377–404.	structured metapopulation models? Including an application to
Calow, P., 1979. The cost of reproduction: a physiological	the calculation of ES dispersal strategies. Proceedings of the
approach. Biological Review 54, 23–40.	Royal Society of London, Series B Biological Sciences 268, 499–50
Charlesworth, B., 1980. Evolution in Age-structured Populations.	Metz, J.A.J., Nisbet, R.M., Geritz, S.A.H., 1992. How should we defin
Cambridge University Press, Cambridge.	"fitness" for general ecological scenarios? Tree 7, 198–202.
natural selection: Colo's result revisited. The American	specific mortality factors. The American Naturalist 112, 521, 55
Naturalist 107 791–793	Mylius S.D. Diekmann, O. 1995. On evolutionary stable life
Charnov, E.L., 1997. Trade-off-invariant rules for evolutionary	histories, optimization and the need to be specific about
stable life histories. Nature 387, 393–394.	density dependence. Oikos 74, 218–224.
Charnov, E.L., Berrigan, D., 1990. Dimensionless numbers and life	Napp-Zinn, K., 1987. Vernalization – environmental and genetic
history evolution: age of maturity versus the adult lifespan.	regulation. In: Atherton, J.G. (Ed.), Manipulation of Flowering
Evolutionary Ecology 4, 273–275.	Butterworths, London, UK, pp. 123–132.
Cooper, J.P., 1963. Species and population differences in climatic	Pasztor, L., Meszéna, G., Kisdi, E., 1996. R ₀ or r: a matter of taste
response. In: Evans, L.T. (Ed.), Environmental Control of Plant	Journal of Evolutionary Biology 9, 511–516.
Growth. Academic Press, New York, pp. 381–400.	Perrin, N., Sibly, R.M., 1993. Dynamic models of energy allocatio
should not be used to model age and size at maturity. The	24 379–410
American Naturalist 149. 381–393.	Pontryagin, L.S., Boltvanskii, V.G., Gamkrelidze, R.V.,
de Jong, T.J., Klinkhamer, P.G.L., de Heiden, J.L.H., 2000. The	Mishchenko, E.F., 1962. Mathematical Theory of Optimal
evolution of generation time in metapopulations of	Processes. Wiley, New York.
monocarpic perennial plants: some theoretical considerations	R Development Core Team, 2007. R: A Language and Environmer
and the example of the rare thistle Carlina vulgaris.	for Statistical Computing. R Foundation for Statistical
Evolutionary Ecology 14, 213–231.	Computing, Vienna, Austria. http://www.R-project.org.
Curren L. Van Dijk H. 1999 Cenetic diversity and gene flow	(Verbascum thensus) I. Latitudinal differences in nonulation
between wild, cultivated and weedy forms of Beta vulgaris L.	dynamics and timing of reproduction. Journal of Ecology 72.
(Chenopodiaceae), assessed by RFLP and microsatellite	897–912.
markers. Theoretical and Applied Genetics 98, 1194–1201.	Reznick, D.A., Bryga, H., Endler, J.A., 1990. Experimentally induced life
Gadgil, M., Bossert, W.H., 1970. Life historical consequences of	history evolution in a natural population. Nature 346, 357–359.
natural selection. The American Naturalist 104, 1–24.	Reznick, D.N., Butler Iv, M.J., Rodd, F.H., Ross, P., 1996. Life-histor
Harper, J.L., 1977. Population Biology of Plants. Academic Press,	evolution in Guppies (Poeciliata reticulata) 6. Differential
London.	mortality as a mechanism for natural selection. Evolution 5
survival and reproduction along a semelparity_iteroparity	IUIU-IUUU. Reznick DN Bryant MI Roff D Chalambor CK
gradient in the Beta species complex. Journal of Evolutionary	Ghalambor, D.E., 2004. Effect of extrinsic mortality on the
Biology 14, 795–804.	evolution of senescence in guppies. Nature 431, 1095–1099.
Hautekèete, NC., Piquot, Y., Van Dijk, H., 2002. Life span in Beta	Roff, D., 1983. An allocation model of growth and reproduction i
vulgaris ssp. maritima: the effects of age at first reproduction	fish. Canadian Journal of Fisheries and Aquatic Sciences 40,
and disturbance. Journal of Ecology 90, 508–516.	1395–1404.
Hill, M.O., Roy, D.B., Thompson, K., 2002. Hemeroby, urbanity and	Kott, D.A., Remes, V., Martin, T.E., 2005. The evolution of fledging
Inderality: Diolinalizators of disturbance and human impact.	age in songpirds. Journal of Evolutionary Biology 18, 1425–143
Juminar of Applica Leology 35, 700-720. Jwasa Y. Cohen D. 1989 Ontimal growth schedule of	a metanonulation with local extinctions and ecological
a perennial plant. The American Naturalist 133. 480–505	succession. The American Naturalist 150. 220–249.
Kozlowski, J., 1991. Optimal energy allocation models – an	Sibly, R.M., 1989. What evolution maximizes. Functional Ecolog
alternative to the concepts of reproductive effort and cost of	3, 129–135.
reproduction. Acta Oecologica 12, 11–33.	Sibly, R.M., Calow, P., 1986. Physiological Ecology of Animals: a
Kozlowski, J., 1993. Measuring fitness in life-history studies.	Evolutionary Approach. Blackwell Scientific Publications,
Trends in Ecology and Evolution 8, 84–85.	Oxford.
KOZIOWSKI, J., Wiegert, K.G., 1987. Optimal age and size at	Smith, H.B., 1927. Annual versus biennial growth habit and its
Final final final final for the second s	129–146
Lacey, E.P., 1988, Latitudinal variation in reproductive timing of	StatSoft Inc., 2004. STATISTICA (Data Analysis Software System
a short-lived monocarp, Daucus carota (Apiaceae). Ecology 69.	Stearns, S.C., 1976. Life-history tactics: a review of the ideas.
r,	, ,

13

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421 1422

1423

1424

1425

1426

1369	Stearns, S.C., 1992. The Evolution of Life Histories. Oxford
1370	University Press, Oxford.
1371	Stearns, S.C., Koella, J.C., 1986. The evolution of phenotypic
1372	plasticity in life-history traits: predictions of reaction norms
1373	for age and size at maturity. Evolution 40, 893–913.

1374

1375

1376

1377

1378

1379

1384

1385 1386

for age and size at maturity. Evolution 40, 893-913. Taylor, H.M., Gourley, R.S., Lawrence, C.E., Kaplan, R.S., 1974. Natural selection of life history attributes: an analytical approach. Theoretical Population Biology 5, 104-122.

Teriokhin, A.T., Budilova, E.V., 2008. The impact of different density stresses on the dynamics of two competitive populations. Ecological Modelling 212, 5-9.

1380 Teriokhin, A.T., Thomas, F., Budilova, E.V., Guegan, J.F., 2003. The 1381 impact of environmental factors on human life-history evolution: an optimization modelling and data analysis study. 1382 1383 Evolutionary Ecology Research 5, 1199-1221.

- Till-Bottraud, I., Wu, L., Harding, J., 1990. Rapid evolution of life history trait in populations of Poa annua L. Journal of Evolutionary Biology 3, 205-224.
- 1387 Van Dijk, H., Boudry, P., McCombie, H., Vernet, P., 1997. Flowering time in wild beet (Beta vulgaris ssp. maritima) along 1388 1389 a latitudinal cline. Acta Oecologica 18, 47-60.
- Van Dijk, H., Desplanque, B., 1999. European Beta: crops and their wild 1390 1391 and weedy relatives. In: van Raamsdonk, L.W.D., den Nijs, J.C.M. 1392 (Eds.), Plant Evolution in Man-made Habitats. VII International 1393 IOPB Symposium. Hugo de Vries Laboratory, University of 1394 Amsterdam, Amsterdam, The Netherlands, pp. 257-270.
- van Kleunen, M., 2007. Adaptive genetic differentiation in life-history 1395 1396 traits between populations of Mimulus guttatus with annual and 1397 perennial life-cycles. Evolutionary Ecology 21, 185-199.

- Venable, D.L., 1984. Using intraspecific variation to study the ecological significance of plant life-histories. In: Dirzo, R., Sarukaan, J. (Eds.), Perspectives on Plant Population Ecology. Sinauer, Sunderland, MA, USA, pp. 166-187. 04
- Volis, S., 2007. Correlated patterns of variation in phenology and seed production in populations of two annual grasses along an aridity gradient. Evolutionary Ecology 21, 381-393.
- von Arx, G., Edwards, P.J., Dietz, H., 2006. Evidence for life-history changes in high-altitude populations of three perennial forbs. Ecology 87, 665-674.
- Wesselingh, R.A., Klinkhamer, P.G.L., de Jong, T.J., Schlatmann, E. G.M., 1994. A latitudinal cline in vernalization requirement in Cirsium vulgare. Ecography 17, 272–277.
- West, G.B., Brown, J.H., Enquist, B.J., 1999. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284, 1677-1679.

Williams, G.C., 1966. Natural selection, the cost of reproduction and a refinement of Lack's principle. The American Naturalist 100, 687-690.

- Williams, P.D., Day, T., 2003. Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution 57, 1478-1488.
- Young, T.P., 1981. A general model of comparative fecundity for semelparous and iteroparous life histories. The American Naturalist 118, 27-36.
- Young, T.P., 1990. Evolution of semelparity in Mount Kenya lobelias. Evolutionary Ecology 4, 157–171.
- Ziolko, M., Kozlowski, J., 1983. Evolution of body size: an optimization model. Mathematical Biosciences 64, 127-143.