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Abstract
[Background] Combining multiple independent tests has been the subject of several approaches. Besides the highly conservative Bonferroni procedure, the Fisher's method has been widely used, in particular in population genetics. This last method has nevertheless been challenged by the SGM (symmetry around the geometric mean) and Stouffer's Z-transformed methods that are less sensitive to asymmetry and deviations from uniformity of the distribution of the partial p-values. Performances of these different procedures were never compared on proportional data such as those currently used in population genetics.
[Results] We present new software that implements a more recent method, the generalised binomial procedure, which tests for the deviation of the observed proportion of P-values lying under a chosen threshold from the expected proportion of such P-values under the null hypothesis. The respective performances of all available procedures were compared from simulated data under the null hypothesis with standard P-values distribution (differentiation tests). All procedures more or less behaved consistently with ~5% significant tests at α=0.05. Then, linkage disequilibrium tests with increasing signal strength (rate of clonal reproduction), known to generate highly non-standard P-value distributions are undertaken and finally real population genetics data are analysed. In these cases, all procedures appear very conservative and the generalised binomial procedure proves more efficient in most situations, though in some situations Z may be useful to consider, particularly when the number of tests is small and strength of signal strong.
[Conclusion] As far as proportional data are concerned, we conclude that the generalised binomial procedure should be preferred except when the number of tests is small (≤5) where Stouffer's Z might perform better. The more conservative SGM might still be appropriate for meta-analyses when a strong publication bias in favour of significant results is expected to inflate type error 2.
Background

It may happen that researchers have to take into account the results obtained from different independently handled statistical tests of the same null hypothesis. It is then desirable to combine all tests into a single one in order to make the most accurate decision. This is typically the case when one wants to combine the results from different published articles and obtain a global P-value over all the tests for global decision making or, in population genetics studies, when the statistical results from different loci or from different kinds of samples must be combined. For instance, it may be desirable to test for genetic differentiation between males and females, between infected and non-infected hosts from different populations or between parasites collected from different host species sampled in sympatry in different locations. Let p1, p2, …pk be the k p-values obtained. Two different procedures are classically used in the literature to combine these k P-values into a single one: the famous so-called Bonferroni procedure and its sequential derivatives [1-3] and the Fisher's method [4, 5]. As already discussed [6-9] the first method is far too conservative, especially so if the goal is to obtain a global P-value and not to identify which P-values are significant, which is really a very different question. The Fisher's procedure was shown to be sensitive to deviations from uniformity of the distribution of the partial p-values by Goudet [10] who then proposed a randomization procedure to test for symmetry around 0.5 using the geometric mean of P-values as a statistic (SGM procedure). Fisher's method was also blamed to suffer from asymmetry by Whitlock who proposed Stouffer's Z-transformed test [11]. An alternative exists that was first introduced by Prugnolle et al. [12]. At a given type I error rate α of say 0.05, if k tests are undertaken under the null hypothesis, it is expected that there are about 5% of P-values that should be equal or inferior to 0.05 (by definition). Then an exact binomial test with 0.05 expectation, k0.05 the number of observed P-values≤0.05 in k trials, should provide the exact probability that a number as great or greater of significant P-values can be observed under the null hypothesis. A generalisation of this simple principle was proposed by Teriokhin et al. [8].


In the present note we propose to describe "Multitest V1.2" that implements this generalized binomial procedure. We propose a performance comparison analysis between binomial, Fisher, SGM and Z-transformed procedures on simulated population genetics data with randomisation tests. We also computed Bonferroni corrections for the sake of comparison. Finally, the comparison is also undertaken on several real data sets. These procedures were never compared before, especially so with randomisation tests on frequency (proportional) data for which minimum P-values are bounded by sample size, genetic diversity and randomisation number.
Methods

Parameters used for the generalised binomial procedure

The different parameters we will use here are the following:


S: a series of independent tests; 

k: the number of tests in S;

α: the chosen level of significance over all the k tests;


Ssorted: the k tests from S sorted in increasing order, P1 the lowest and Pk the highest;

k': The number of tests in Ssorted that need to be equal or under a given level so that H0 is rejected at level α for S;

α': the level to which all P-values from the first to the k'th in Ssorted must stay equal or inferior (Pk'≤α'), so that H0 can be rejected at level α;

kα': the number of tests that are significant at level α';
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: the minimum value required for α that leads to reject H0, for a given k' or α'.
The software


Multitest V1.2 is a Windows application developed with Delphi 5 (1999, Inprise Corp). The algorithm, detailed procedure and the Quick-Basic source can be consulted in [8]. The philosophy behind the test is that the k independent P-values of the same null hypothesis H0 should be distributed according to a uniform distribution with mean 0.5 and limits [0,1]. The software was designed to deal with two distinct situations. In the first situation one chooses k' the number of partial significant tests that will define, for a given α, the level α' at which the k' tests need to be significant (i.e. ≤α') so that S is significant at level α. For this situation we recommend to always use k'=k/2 or in any case to define k' before anything else is undertaken (k' should never be chosen a posteriori). In the second situation one chooses α' that will determine the required number of tests k' that need to be ≤α', so that S is significant at level α. This second situation is particularly useful when the exact P-values are unknown and levels of significance are indicated by symbols such as "ns" (not significant), "*" (significant at α=0.05), "**" (α=0.01) and "***" (α=0.001). 

While running Multitest you are asked to provide several quantities. The first quantity is the desired level of significance. Classically 0.05 is chosen, but you might be more or less severe, particularly if you are looking for 
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, the "exact" threshold P-value for the k tests series. The second quantity corresponds to the total number of tests you want to combine (k). Then you are asked to choose either to fix k', and search for α', or to fix the value of α', and search for k', under the chosen overall significance level α. If you choose to fix k' then the software will outputs α' that should be ≥Pk' (Pk' corresponds to the k'th of your k P-values ranked in increasing order). If α'<Pk' then S is not significant at level α. If you choose to fix α' the software outputs k' the number of tests that must display a P-value≤ α'. If k'>kα' S is not significant at level α. The precision can also be chosen (default=10-4). Finally, you are asked to choose an output file where all the results are stored in a text file presented as a table sheet. We advise using the .mul extension but this is left to the user's preference.

Let us see one example as illustration. Let us assume that we obtained the following P-values after testing for genetic differentiation between males and females of a given imaginary species from ten different localities (k=10): 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.5, 0.5 and 0.6 (please note that none of the tests is significant at α=0.05). We want to obtain the P-value=
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 corresponding to H0 that there is no differentiation between males and females across the k-tests series. We set α=0.05, k=10 and choose to test for k'=k/2=5. From there the result is α'=0.22, meaning the series is significant at α=0.05 if it contains at least five tests with P-value≤0.22, which is indeed the case as our fifth smallest P-value, P5=0.1. A much lower level of significance α can be chosen for the series. Here, the minimal level of significance is in fact 
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≈0.0017, which outputs α'=0.1008≥P5=0.1. Consequently, 
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 represents the P-value (highly significant) over all the k tests.
Evaluating performances of combining procedures with simulations

All simulations were made under Easypop V 2.01 (Balloux 2006, updated from [13])

Simulations of controlled null hypotheses

We simulated 1000 Island models (1000 replicates) with free migration (m=1) of 100 randomly mating populations of 100 monoecious individuals each, 10-5 mutation rate, 20 independent loci with u=10-5 mutation rate into 99 possible allelic states, starting with maximum diversity and for 1000 non-overlapping generations. We then tested for genetic differentiation across populations using a random sample of 20 populations of 50 individuals each. The test used was the G-based (log-likelihood ratio) randomisation test [14]. The statistic G is computed on contingency table of allelic frequencies from the different subsamples and randomisation based on multilocus genotypes (individuals are permuted across subsamples). For each individual test (each locus) H0 was "there is no differentiation between populations". This test was implemented with Fstat 2.9.3 (Goudet 2002, updated from [15]) that also executes a global test across the 20 loci using the additive property of G (e.g. [16]). It thus provides a "true" P-value that takes into account the information from all loci, weighted with sample sizes and allelic frequencies. For each replicate (1000 simulations) we combined the 20 tests across the 20 loci with the different methods. Note that in Genepop [17, 18], Fisher's method is used to combine P-values across loci. Please also note that the tests are not G-tests but randomisation tests using G as a statistic. The P-values obtained are thus unbiased estimate of exact P-values [19]. This test was deeply investigated [14] and is expected to generate "standard" P-value distributions: uniform under H0 and progressively skewed to lower P-values under increasing deviation from H0. It was undertaken to test and compare the correct behaviour of the different procedures under a realized null hypothesis.
Simulations with controlled alternative hypothesis

We chose the randomisation test of linkage disequilibrium (LD) between paired loci of Fstat 2.9.3. The software implements a randomization G-based test (based here on the contingency table of genotypic frequencies of a pair of loci). A global P-value is obtained across subsamples using the additive property G. It thus provides a "true" P-value that takes into account the information from all subsamples, weighted with sample sizes and allelic frequencies. LD was chosen because it is probably the population genetics test that generates the most non-standard P-value distributions (e.g. U shaped) (see [20]), thus the closest to natural imperfect data. For all simulations, parameters were 10,000 non-overlapping generations, in an Island model with n=50 subpopulations, N=500 individuals per subpopulation, m=0.001 migration rate, two loci with u=0.00001 mutation rate with 99 possible allelic states. All simulations were replicated 20 times. Alternative hypotheses of increasing strength were obtained by increasing the clonal rate c=(0, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95) that generates a corresponding increase in LD between loci [20]. For all simulations 20, 10 or 5 subpopulations of 20 individuals each were sampled, in order to get different values for k. Some simulations ended with a few less than k P-values because some tests were not feasible in some subpopulations (no polymorphism at one locus). Please note that though the strength of deviation from H0 is controlled for, H0 can itself never be simulated. A full independence between loci would require an infinite population size with free recombination for an infinite number of generations. Thus, a signal (even very weak) is expected even with random union of gametes (c=0).
Procedures to combine the k P-values

The binomial probability 
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 was looked after with Multitest V1.2. Note that α' is bound to 0.5. When Pk'>0.5, increasing α (to get an "exact" P-value) invariably outputs α'=0.5. In such cases we simply used the actual value Pk' as the global P-value. This has no incidence on the results presented in the present paper as we only were interested in 
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P-values.

Fisher's procedure is simply obtained by a Chi-square test with 2(k degrees of freedom on the quantity: 
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The SGM procedure was implemented by the eponym computer program kindly provided by J. Goudet. It uses a randomisation procedure to test the symmetry around 0.5 of the geometric mean of the k P-values.

For Stouffer's Z transform test, each P-value pi is transformed into its standard normal deviate Zi, which, for instance, can be obtained by the normal inverse function of Excel™, with a maximum value of 3.1 when pi=1.


Zi is used for the computation of the statistic Zs [11]:
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Zs is then compared to the normal standard distribution (e.g. NORMSDIST(Zs;0;1) in Excel).


Finally, the Bonferroni P-value is obtained by multiplying the smallest of the k P-values by k or is set to 1 if this product gives a value above this limit. Bonferroni should only be used to detect which tests are significant but, in the case of multiple testing, it is often proposed as a correction. For pairwise tests for which no global test exists, like differentiation between paired populations or LD between several pairs of loci, it is often used as a global facility.
Comparing performances on real data sets

Four data sets were used: two data sets on mussel (Mytilus galloprovincialis) allozymes from [21] and [22]; one data set on schistosome flukes (Schistosoma mansoni) microsatellites [12] and one data set on the opportunistic fungus Candida albicans allozymes [23]. We undertook LD tests on these data to compare natural results to our simulations.

Finally we used some non LD-based real datasets. Two data sets are from [10] (key innovation and rate of speciation in different taxonomic groups) for viviparity in fishes [24] and branch length in angiosperms [25] where contradictions were found between Fisher and SGM procedures and where publication biases may interfere with final results. Two data sets concern examples of combination of non parametric correlation tests: one data set studies the correlation between limpet abundance and cockle shell size on which they settled in New-Zealand shores [26] and one data set examines the correlation between the presence of two pathogenic bacteria in Tunisian cattle individuals [27]. A fifth data set combines test for bottleneck signatures (severe population reduction) on population genetics data in wild rusa deer populations from New-Caledonia [28]. The last data set concerns the results obtained on the relatedness between male and female cattle ticks found as pair on different hosts and different farms in New-Caledonia [29].
Results and discussion
Simulations of controlled null hypotheses

The global G output 44 significant test at α=0.05 (out of 1000 replicates), and Fisher, Binomial, SGM, Z and Bonferroni outputted 51, 48, 42, 45 and 49 significant tests respectively. None of these values significantly deviates from the expected 5% (Exact binomial test, P-value>0.27). 

To conclude, all procedures are fine under H0 and give rather equivalent results though we can rank them in decreasing order of power as Fisher, Bonferroni, Binomial, Z and SGM. Nevertheless, as mentioned earlier, Bonferroni is not really to be included in this comparison as it is more appropriate to detect which tests are significant and not for global testing. Bonferroni was indeed rarely significant with other procedures and mainly found (32 times) significant alone.
Simulations with controlled alternative hypothesis


The first important result, though beyond the scope of the present paper, is that the power of LD test is weak as it can be observed from Figure 1. A substantial amount of significant tests only arise for c=0.9 (90% clonal reproduction). The second result is that, in case of non-standard P-value distributions, combinatory procedures are very conservative. The third observation resulting from Figure 1a is that the binomial test performs best in most situations. This however is not always the case and in some situations other tests appeared more powerful. This is particularly true when the signal is strong (c≥0.9) and k≤10. When the signal is weak or mild (c≤0.8) the generalised binomial procedure performs best in almost all circumstances. Finally, when the number of tests is big (k=20) and the deviation from H0 strong (c=0.95) all procedure display a 100% level of detection but SGM and Bonferroni. For Bonferroni this comes from the same reasons discussed above. For SGM this comes from the fact each time a P-value is close or equal to unity, it becomes almost impossible for the procedure to output a significant result, even when a substantial proportion of tests in the S series are very small. In fact this test is especially conservative in case of U-shaped P-value distributions. It was indeed designed for combining published P-values on the same null hypothesis, in which case a publication bias is expected and thus for which more weight for non-significant results may be desirable (see also [11]). Because of the nature of LD tests, U-shaped distributions are likely to occur when in some populations polymorphism will be insufficient at one locus, leading to very high P-values. This is also likely to occur often in many population genetics data sets where the power of the different tests in a series will rarely be identical and most of the case highly variable because of uneven sample sizes and variable genetic diversity across sub-samples. Fisher's procedure did not appear very competitive here but when the signal was very strong (c=0.95). Moreover, as already discussed elsewhere [10, 11], Fisher's procedure suffers from a serious caveat. When a single P-value is very low, analysis of any S will invariably output a significant global P-value. Here, because the alternative hypothesis is that a signal exists across ALL tests, such caveat should ideally be avoided. Given results obtained here and elsewhere, Fisher's method should be avoided in most cases if not all.
Real data sets


For LD tests, only independent series (no locus repeated) for which the global G-based test provided a significant P-value are presented. A glance at Table 1 confirms that the Binomial procedure behaves better when the number of tests k>5 and Z appears more powerful when k≤5. These general tendencies are confirmed with the non LD-based data sets. For literature based data, SGM interestingly outputs non-significant results in opposition to other procedures. Here, publication bias might be interfering and the most conservative SGM may be more appropriate, providing the several P-values close to unity are not due to low power tests. It may happen that some tests were made in samples verifying H1 and others H0. Mixing 10 P-values from our simulated H0 with 10 P-values from our simulations with c=0.95 did not spectacularly dropped the proportion of significant global tests but for the binomial (100% detection to 50% detection). There is indeed no reason that such situations would generate more ~1 P-values than expected under full H0 and such phenomena are not expected to affect SGM much. 
Conclusion


Our recommendation is to never use Bonferroni, even in the case of non-independent tests (pairwise tests) for which the binomial test with α'=0.05 should be preferred. Bonferroni is only useful at identifying which tests are significant in a series. When k>5 we will conservatively recommend using the binomial procedure and to prefer Z when k≤5. It is noteworthy signalling that a weighted version of Z, more powerful, was also proposed [11]. For population genetics data, weighting is a complex interaction between sample sizes and allelic frequencies, but an interesting trail to follow may come from there. For published P-values combination, the conservative SGM procedure might be preferred when a publication bias is suspected, but users should be aware that this test will always be very conservative when one or few tests are close to unity. Finally, another advantage of the binomial approach is that it can work even when the exact values of probabilities are unknown but only their significance at a given level, a property not shared by any of the other procedures that all require numerical inputs.
Availability and requirements

Project name: MultiTest


Project home page: http://gemi.mpl.ird.fr/SiteSGASS/SiteTDM/Programs

Operating systems: Windows (XP, Vista)


Programming language: Delphi 5.
List of abbreviation used


H0: Null hypothesis

H1: Alternative hypothesis


LD: Linkage disequilibrium between loci

SMM: Stepwise Mutation Model (applies to microsatellite loci)
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Figure legends
Figure 1: Proportion of significant linkage disequilibrium tests (α=0.05) as a function of increasing global linkage across all loci (clonal rate increase): for all k (number of tests, k=4-20) (1a), for k=4-5 (1b), 8-10 (1c) and 18-20 (1d), for the most accurate test (G) and different combining procedures (Fisher, Binomial, SGM, Z and Bonferroni as defined in the text). In (1a), the number of tests were 120 for c=0-0.1, 0.2-0.3, 0.5-0.6 and 0.7-0.8 and 60 for c=0.9 and 0.95 respectively (20 replicates ( 3 modalities for each clonal rate) (see text for more details on simulations). For (1b-c), these where 40 for c=0-0.1, 0.2-0.3, 0.5-0.6 and 0.7-0.8 and 20 for c=0.9 and 0.95 respectively.
Figure 1a
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Figure 1b
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Figure 1c
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Figure 1d
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Table 1: Comparison between different combinatory tests for real data with the exact multisample test G for linkage disequilibrium. The number of tests combined k is also given. More details can be found in the text. Significant combined P-values are in bold.
	Organism
	Locus pair
	k
	G
	Fisher
	Binomial
	SGM
	Z
	Bonferroni
	References

	Mussel
	MPI vs ESTD
	12
	0.0079
	0.0915
	0.0180
	0.9330
	0.8620
	0.2028
	[21]

	Mussel
	PEPA vs PEPD
	5
	0.0110
	0.0357
	0.0904
	0.0330
	0.0154
	0.1100
	[22]

	Schistosome
	F vs L28
	27
	0.0039
	0.2841
	0.3105
	0.9865
	0.9542
	0.5697
	[12]

	Fungus
	HK2 vs FK
	5
	0.0001
	0.0539
	0.0821
	0.0355
	0.0164
	0.4982
	[23]

	Fungus
	G6PD vs MPI
	4
	0.0008
	0.0765
	0.2630
	0.0570
	0.0291
	0.4074
	[23]

	Fungus
	HK1 vs GPI
	2
	0.0194
	0.0991
	0.1908
	0.2479
	0.0673
	0.2008
	[23]


Table 2: Non LD-based real data sets presenting different cases where combining probabilities methods can be applied. Significant combined P-values are in bold.
	H0
	k
	Fisher
	Binomial
	SGM
	Z
	Bonferroni
	References

	No association between viviparity 
and number of species in fishes
	10
	0.0446
	0.0081
	0.1804
	0.1070
	0.0500
	[24]

	No association between branch length 
and number of species in angiosperms
	39
	0.0065
	0.0216
	0.3073
	0.1311
	0.1590
	[25]

	No association between shell size 
and limpets abundance on cockle
	3
	0.0001
	0.0589
	0.0005
	0.0001
	0.0003
	[26]

	Random co-occurrence of Theileria annulata 
and Anaplasma marginale in cattle
	2
	0.0039
	0.1240
	0.0050
	0.0024
	0.0140
	[27]

	No bottleneck in rusa deer wild populations 
with the SMM model of mutation.
	8
	0.0298
	0.0488
	0.0155
	0.0170
	0.1094
	[28]

	Assortative pairing of female 
and male cattle ticks on their host
	20
	0.3417
	0.1424
	0.1644
	0.1928
	0.3000
	[29]

	SMM: Stepwise Mutation Model (applies to microsatellite loci)
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